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ABSTRACT

This thesis describes a method of computing a feasible path solution for

the anisotropic weighted region problem. Heuristics are used to locate an

initial starting solution. This starting solution is iteratively improved using a

golden ratio search to produce a solution within a specified tolerance. The

path solution is then randomly perturbed or detoured through different

region frontiers, and the golden ratio search is again applied. These random

detours are controlled by a process known as simulated annealing, which

determines the number of detours made and decides whether to accept or

reject each path solution. Better solutions are always accepted and worse

solutions are accepted based on a probability distribution. Accepting worse

solutions allows an opportunity to escape from a local minimum condition

and continue the search for the optimal path. Since an exhaustive search is

not performed, the globally optimal path may not be found, but a feasible path

can be found with this method.
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I. INTRODUCTION

A. GENERAL BACKGROUND

Military applications of autonomous vehicles are twofold: to delegate

certain repetitive tasks to machines, allowing more efficient use of scarce

human resources, and to avoid exposing humans to hazardous duties that

could be satisfactorily performed by automated machines. An autonomous

vehicle could transport supplies from a rear area support facility to a front

line unit. It could also perform surveillance and measurement functions in

areas contaminated by chemical or radiological agents. To accomplish these

tasks, a vehicle must be capable of examining terrain data and selecting a path

which permits efficient travel from a start point to a given destination.

This process begins with high-level path planning, where the vehicle

may take into account terrain, weather, concealment, and exposure to hostile

forces in selecting the general route to take. One way to model this task is by

using the weighted region problem.

B. THE WEIGHTED REGION PROBLEM

1. Definition

The weighted region problem accepts input from a two-dimensional

Cartesian map which models terrain as convex polygonal regions. Each

region is assigned a cost coefficient or weight which is the cost per unit

distance travelled, relative to other regions in the map. The cost of traversing

a region is calculated by multiplying the region's weight by the Euclidean

distance travelled through the region. See Figure 1.
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Figure 1. Weighted Region Problem

Given a start point and destination point in terms of map

coordinates, the goal is to find the most efficient path from start to destination

through the weighted regions.
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An extension of the weighted region problem involves finding a path

through sloped regions, where a ground vehicle's direction of travel is

limited by its ability to climb steep hills and travel across sideslopes.

Researchers describe this path planning problem as the anisotropic

weighted region problem. Anisotropic means that the direction of travel also

influences the cost of traversing a region. For example, it requires more

energy to travel uphill on a path than it does to travel downhill on the same

path. A heading which would cause a vehicle to exceed its center-of-gravity

limits can be avoided by assigning an infinite (or sufficiently large) cost to this

path. Because of the added dimension of elevation, this problem is

sometimes referred to as 21 dimensional path planning.

2. Problems to Overcome

An efficient path planning program is not trivial. This program

must select each segment of the path by comparing the surface condition and

slope of each region with the physical limitations of the vehicle. A method of

partitioning the terrain must be determined. One way is to divide the terrain

into a grid such that each grid square possesses homogeneous terrain with

;espect to surface composition, slope, and traversal cost. While this method

may be relatively simple to implement, a large number of grid squares

requires large memory allocation and the solution path may not be safe due

to the "stair stepping" characteristics of moving from one grid square to a

neighboring grid square.

In another technique, partitions are only made when necessary. A

region is defined by homogeneous terrain, and is independent of size or

shape. This approach reduces memory requirements, but complicates the

3



sea-ch for the optimal path because the traditional "shortest path" graph

search algorithms do not provide sufficient resolution to obtain an efficient

path. Most implementations of this technique restrict the regions to convex

polygons which simplifies the search and cost-calculating processes.

The vehicle must avoid areas where its power or stability limitations

are exceeded. If not, the vehicle will find itself facing a hill which it cannot

climb or a sideslope which will cause it to overturn. Paths which lead

downhill may also be undesirable. If the destination's elevation is equal to or

higher than the start point's elevation, then travelling downhill only

increases the net elevation the vehicle must climb in order to reach its

destination.

Once the program eliminates non-negotiable terrain regions from

consideration, it must examine the remaining regions and select an acceptable

path. These remaining regions may or may not be traversable, depending

upon direction of travel. Again, the vehicle must avoid path headings that

lead to excessively steep climbs or a potential rollover condition.

The calculations required to conduct an exhaustive search for an

optimal path in 21 dimensional space grow exponentially with the number of

regions in the search space. Accuracy is a function of resolution of the search

space. Greater accuracy requires smaller grids or regions that provide a more

accurate representation of the terrain, but increase the number of calculations

necessary to investigate each segment of the search space (or map). This

computational workload requires the use of a computer to speed up the

process and determine the results in a reasonable amount of time.
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Even with the aid of a computer, the time required to determine an

optimal path may be excessive. Current algorithms do not find an optimal

path through 21 dimensional space within acceptable time limits.

5



II. PREVIOUS WORK

A. ALGORITHMS

Several algorithms have been developed to solve the weighted region

problem, including wavefront propagation [Ref. 1] and the continuous

Dijkstra algorithm [Ref. 21. The algorithms most impacting on this work are

the systematic search by Ross and the stochastic approach by Kindl.

B. SYSTEMATIC SEARCH

Ross [Ref. 3] describes an algorithm which finds an optimal path through

anisotropic weighted regions. He implemented his work with the Common

Lisp programming language. Ross's algorithm used a map that was divided

into homogeneous regions. The area within a region shares a common slope,

orientation, surface composition and condition, stability and braking

constraints.

He also defined a vehicle model which represents slope, climb, stability,

and braking limits. He extensively described the trigonometric and physics

equations used to determine which headings were allowable in each region.

Ross used an A* search algorithm to find feasible paths to investigate. He

calls a sequence of regions that contains a feasible path from start to goal a

window sequence. See Figure 2. For each feasible window sequence, the

algorithm conducts an exhaustive search of all paths that lie within the

permissible heading ranges.

Although this procedure finds the globally optimal path, the time

required to find it renders the program impractical. Test results show it may

6



require as much as 29 minutes to calculate a globally optimal path on a simple

map containing 40 regions.

Figure 2. Window Sequence

C. STOCHASTIC APPROACH

Kindl [Ref. 4] introduced a stochastic approach to solving the isotropic

weighted region problem. He implemented his work using the C++ and

Prolog languages. His approach is based on a technique called simulated

annealing. Like Ross, Kindl defined the regions on a map by edges and

vertices. Kindl placed a node at the mid-point of each edge and defined a

series of arcs which connect every node in a region. He calls this structure an

edge dual graph. See Figure 3. Kindl then finds a feasible window sequence

7



by performing an A* search on the edge dual graph. This path is the basis for

finding a locally optimal path through the generated window sequence. The

locally optimal path is found by iteratively applying golden ratio search to the

path segments.

0 0

I'

Figure 3. Edge Dual Graph
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Kind's program then uses path annealing to perturb the window

sequence by randomly re-routing path sequences through neighboring

regions in an attempt to find a better path.

Eligible neighboring regions are limited by a bounding ellipse which is an

oval drawn around the start and goal. Regions or portions of regions outside

the bounding ellipse are not considered by the annealing process.

While not guaranteed to find the globally optimal path, this procedure

does find a near optimal path in much less time. Although Kindl's

procedure produced excellent results, its scope is limited to two dimensional

path planning. Extension of Kindl's work to 21 dimensional path planning

will significantly broaden its applications.

9



IllI. GENERAL PROBLEM-SOLVING STRATEGY

To solve the anisotropic weighted region problem, we need vehicle and

terrain models, geometric spatial reasoning functions, search functions, cost

functions, and annealing control functions.

Given a vehicle and map, the general strategy is:

1. perform a search through the map regions to create a region list which
may contain an initial path solution.

2. calculate necessary information and put these regions into a data
structure called window list.

3. for each adjacent pair of regions in the window list, iteratively

(a) determine heading ranges and cost functions.

(b) perform a golden ratio search on each heading range combination
and locate the optimal heading range combination.

(c) perform a golden ratio search on the region crossing frontier
defined by the optimal heading range combination and locate
(within tolerance) the optimal crossing point.

4. if any crossing point shifted more than the specified displacement, go
to 3.

5. if any path segment headings are impermissible, attempt to detour
around them to find a valid path segment.

6. use random annealing in an attempt to find a shorter path.

These steps are described in greater detail in subsequent chapters.

10



IV. MODELING THE VEHICLE AND TERRAIN

A. VEHICLE

The vehicle model used in this work is a simplified version of those used

by Ross and Rowe [Ref. 5] and Rowe and Kanayama [Ref. 6]. We are

concerned with vehicle-specific heading limits for climbing, braking, and

slideslope travel. See Figure 4. Given a vehicle's heading limits and the

slope and orientation of a region, critical headings can be computed by the

following formulas:

critical-p = arccos ((tan limit-p) / (tan slope))

critical-s = arcsin ((tan limit-s) / (tan slope))

critical-b = arccos ((tan limit-b) / (tan slope))

where limit-p, limit-s, limit-b are, respectively, the slope angle thresholds

where the vehicle's uphill, sideslope, and braking limits occur.

Each critical angle has a dual, which with the critical angle defines a

heading range. These dual headings are calculated as follows:

dual-p = - critical-p

dual-s = - critical-s

dual-b - - critical-b

critical-I = - critical-s

dual-1 = critical-s - x

11



power limit
heading range

braking
heading range

gravity

(b),:

~gravity

(a)

{ (a) Rollover condition

(b) Sideslope safe condition

Figure 4. Vehicle Model

There are four ranges: power-limited, braking, and two sideslope ranges,

one to the vehicle's left and the other to the right. If the vehicle's heading

12



falls within one of these ranges, the corresponding condition applies. See

Figure 5. For example, if the critical power-limit angle is 200 and its dual is

3400, a vehicle travelling at a heading of 3550 is subject to the power-limited

condition.

dualpwe critical-power
heading power-limited heading

range

critical-leftaing critical-right

heading headingrangebrani

dual-braking rag rtical-braking

heading heading

Figure 5. Critical heading ranges
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These critical headings will vary from region to region as the slope varies.

If a critical heading is equal to its dual, the region's slope is less than the

vehicle's heading limit and no heading restriction exists for that particular

range. For example, if a region's critical sideslope heading is equal to its dual

sideslope heading, the vehicle can freely traverse the region without fear of

rolling over.

B. TERRAIN

1. Homogeneous Regions

The terrain is modelled by convex homogeneous polygonal regions.

Regions boundaries are defined by vertices and each region possesses uniform

surface condition, slope and weight. The maps we used were manually

constructed and do not represent actual terrain. See Figure 6.

2. Vertex List

A vertex is a point defined by x, y, and z coordinates. A vertex can be

on the boundary of more than one region. All vertices necessary to define the

map are collected into a vertex list.

3. Region List

The region list is a collection of all regions in the map and contains

the vertex list, weight, slope, orientation, and adjacent region list for each

region.

4. Frontier

A frontier is the line separating two regions. It is represented as an

edge with its endpoints defined by vertices.

14



vertices - V

V1 frontier

region 1 region 2

V5

V6

V4

Region 1 is defined by vertex list (V1, V2, V5, V6)
Region 2 is defined by vertex list (V2, V3, V6, V5)
The frontier between region 1 and region 2 is defined by edge (V5 V2)

Figure 6. Regions, Vertices, and Frontiers

4. Window list

Once an initial window sequence (a list of regions) is computed, each

region in the list is put into the window list (a linked list). Additional

information for the window list (such as all critical headings, and various

"housekeeping" variables) is now calculated. We only compute these values

for regions in the window list, and thus, only for the regions we will actually

"visit. "

5. Type I, II, III, IV Traversals

Ross classified traversals through a region into four types:

15



A Type I traversal is the simplest. It is merely travel from one

isotropic region to another isotropic region. In other words, the crossing

point of the boundary edge is determined with respect to weighted distance

only. There are no heading restrictions associated with this type of crossing.

With a Type II traversal the optimal path must be altered in one or

both regions because it falls within a nonpermissible sideslope heading range.

The nonpermissible heading is adjusted to the nearest critical angle, which

allows the path to lie as close as possible to the optimal (but forbidden)

heading.

Type I traversals feature switchbacks, which allow a vehicle to travel

through an uphill nonpermissible heading range by switching between the

pair of critical angles that border the nonpermissible range. The vehicle is

allowed to make as many switchbacks as necessary to traverse the region.

Type IV involves travelling downslope where braking is required.

There are no heading restrictions, but a different cost function (described in

the next section) is required for travel within the braking range. See Figure 7.

7. Cost Functions

For Type I traversals, the cost function is simply the region's weight

multiplied by the Euclidean distance calculated from the point of entry, p1, to

the point of exit, p2.

cl = weight x distance (pl, p2)

For Type II traversals, the cost function is also weighted distance, as in

Type I. However, recall that the heading is adjusted to a critical heading to

allow passage through the region.

c2 = weight x distance (pl, p2)

16
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Figure 7. Type 1, 11, 111, IV Traversals
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Calculating Type I traversals also involves a weighted distance cost

function, but the distance must take into account switchbacks. The distance

for a switchback traversal, regardless of the number of switchbacks

encountered, requires calculating the intersection of two rays. The first ray

originates at start point pl of the first segment, swl, with a direction of the

critical impermissible heading. The second ray originates at the start point p2

of the second segment, sw2, with a direction of x + the dual critical

nonpermissible heading.

Call this point of intersection i. The cost is the weighted distance

from the start point of the first segment to the point of intersection i plus the

weighted distance from the point of intersection i to the start point of the

second segment. See Figure 8.

c3 = weight x distance (pl, i) + distance (i, p2)

The cost function for Type IV (braking) traversals must take into

account changes in elevation. Although our vehicle model claims no energy

is expended while travelling within a braking region, a virtual cost is

incurred because potential energy is lost as a result of the vehicle's decrease in

elevation [Ref. 6]. The cost for travelling within a braking region is thus

calculated as the change in elevation from the point of entering the region,

pl, to the point of exiting the region, p2. Distance is not relevant to this cost

function.

c4 = abs ((elevation pl) - (elevation p2))

18
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(at critical power heading)

exit point, p2

exit frontier

(switchback point)

entry frontier

entry
point, pl

sw2
(at dual power heading + 70

Figure 8. Finding a Switchback Point
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V. PROBLEM SOLVING

A. A* SEARCH

1. Edge Dual Graph

Kindl's edge dual graph provides an excellent means of locating

feasible window sequences. The fully connected edge mid-points (nodes) of a

region provide a good cost estimate of traversing a particular portion of the

region. See Figure 9. But instead of constructing a complete edge dual graph,

we construct "on the fly." We only compute distances for the region currently

being expanded.

At this point of the search we do not take into account vehicle

heading restrictions (except as noted in the next paragraph), but we do expect

every region in the sequence to be traversable within at least one more

heading range. The A* search also avoids traversal of narrow regions where

all headings between two frontiers fall within a non-permissible slideslope

range. See Figure 10. Other regions may be labelled as obstacles if their

traversal costs exceed a pre-determined threshold value. The window

sequence returned by this search procedure is not guaranteed to be feasible.

Although any single region in the sequence may be traversable, a crossing

point between two regions which simultaneously avoids nonpermissible

sideslope headings in both regions may not exist. See Figure 11. In this case,

we attempt to detour around the impermissible path segment.

20
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dexit fronter
heading

sideslope
cri-ical

~Iheadingo

rpgion

entry frontier

direction of travel

It is impossible to travel from the entry frontier to the exit
frontier without violating the sideslope heading restrictions.

Figure 10. Narrow Region with Nonpermissible Entry
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region 1

avoid avoid

region 2

Figure 11. Two Regions with no Valid Crossing Point

2. Heuristic

The heuristic evaluation function for the A* search is the shortest

distance to the goal. The distance from each active node (midpoint of the

edge) to the destination is calculated and added to the cumulative cost of

reaching the node. The node with the lowest sum is selected for expansion.

B. FINDING THE LOCALLY OPTIMAL PATH

1. Processing a Window Sequence

The A* search returns a list of regions within which a feasible path

lies. The region list, start, and goal are processed into a linked list which

23



contains region-specific information such as critical heading ranges, boundary

edge and exit point, and a displacement which measures the magnitude of a

point's movement during the iterative optimization process.

2. Golden Ratio Search

The golden ratio search is used to approximate the locally optimal

path through two adjacent regions. The procedure involves two path

segments, with one segment for each region being searched. The outer end

points of the path segments remain fixed, and the interior point where the

two segments meet is adjusted along the frontier (within a given tolerance) to

find the minimum cost. See Figure 12.

The procedure exploits the convex function defined by adjusting the

crossing point along the frontier. By sampling four points along the frontier,

it is possible to determine that the optimal cost lies within the range of three

of these points and the search space beyond these three points can be

eliminated from the search process. This procedure can be repeated on an

increasingly smaller search space until the desired accuracy is obtained.

However, the procedure does reach a point of diminishing returns where

additional searching produces negligible results. We halt the search when

improvement is less than two percent of the current path cost

3. Partitioning the Regions by Heading Ranges.

When calculating the cost of traversing adjacent regions, we must

determine within which heading range the vehicle is travelling. The

vehicle's heading determines which cost function to use. There are three

permissible heading ranges: headings within the power range, braking range,

24



p1

p4

p2

mn (pl p2 p3 p4) = p3, therefore the global
minimum cannot lie on

the curve between pl and p2

Figure 12. Golden Ratio Search

and isotropic (unrestricted) range. We must also consider the nonpermissible

sideslope heading ranges because an initial crossing point may force a path

segment to lie within a nonpermissible heading range. Since the golden ratio

search requires a convex cost function to approximate the cost of traversing

two regions, we must consider the possible combinations of heading ranges

(and thus cost functions) between two adjacent regions. There are 42 = 16

possible combinations. See Table 1.
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TABLE 1. HEADING RANGE COMBINATIONS

power isotropic braking side

power pp pi pb EL

isotropic ip ii ib is

braking bp bi b bs

sideslope spsi sb ss

For example, "ip" represents the cost function for traversing a region within

an isotropic heading range and transitioning to a power heading range when

crossing into the next region. The ranges involving nonpermissible sideslope

headings are assigned a large value representing "infinity."

We distinguish these heading range combinations by computing

transition points along the frontier. Each transition point marks the

transition from one heading range (and thus cost function) to another. See

Figure 13.

The end points of the frontier serve as the initial and final transition

points. We must also keep track of which region (the region before the

frontier or after the frontier) and heading range the transition point is

associated with. We now find intermediate transition points along the

frontier, if any exist. For the first region, we compute a ray from the region's

entry point at all eight critical headings. For every ray that intersects the

frontier, we assign a transition point at the point of intersection. For the

second region (beyond the frontier), we compute "back rays" from the

region's exit point at each critical heading + x. We again assign a transition

point where any back ray intersects the frontier.

26
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frontier toi
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cost functions for partition

Figure 13. Partitioning Regions by Heading Ranges

Working from left to right along the frontier, we conduct a series of

golden ratio searches. Each time we encounter a transition point, we change

to the appropriate cost function.

27



After one sweep of the frontier, we have determined which heading

range combination is likely to contain the optimal crossing point. Since we

know between which two transition points this optimal crossing point lies

(and thus the appropriate cost function to apply), we conduct a more precise

golden ratio search along the frontier between these two transition points.

This search locates (within tolerance) the optimal crossing point between the

two regions.

C SIMULATED ANNEALING

1. Background

Johnson, et al, [Ref. 71, describe the use of simulated annealing for

solving the graph partitioning problem. This is essentially a modified

technique of iterative improvement of a local solution until an acceptable

result is achieved. Annealing allows for occasional acceptance of a

degenerative solution in an attempt to escape from a locally optimal but

globally poor solution.

The basic simulated annealing algorithm requires as input:

1) the solution space

2) control parameters for the annealing process, which include

a) To - the initial value of the control temperature T

b) Tf - the "freezing" value of T

c) R - the reduction factor for T (typically 0.70 <= R <= 0.99)

d) L - the maximum number of attempted moves at each value of T

e) Ls - the maximum number of accepted moves at each value of T

Beginning with the initial solution, the move generator randomly

perturbs this solution to obtain a new one. The change in cost, Ac, is the
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difference between the cost of the new solution and the current solution. If

Ac < 0, the new cost is less than the current cost, and the new solution

becomes the current solution. If Ac > 0, the new solution is accepted as the

current solution based on a probability function. The typical probability
-Ac

function is P = e T , where Ac is the cost difference and T is the current

temperature.

The control temperature T is expressed in the same units as the cost

function. As the solution space is searched, T is reduced by the reduction

factor R which progressively reduces the probability of accepting a solution

with higher cost.

At each temperature T, the move generator attempts up to L moves,

accepting up to Ls solutions of higher cost. The temperature eventually

reduces to Tf, the freezing temperature, where no solutions with higher costs

are accepted. At this point the algorithm halts and returns the best solution

found.

Kindl [Refs. 4, 8] used this annealing concept in attempting to

improve a current path solution. Recall that a path lies in a window

sequence. The border between windows is an edge whose endpoints are

defined by vertices. A vertex may define the endpoint of more than one edge.

Thus, a vertex may be common to more than one window (or region).

Kindl's procedure randomly selects a vertex, called the rotation

vertex, which belongs to the current window sequence. All edges with this

vertex as an endpoint are identified. The current path solution passes

through at least one of these edges. Edges through which the path crosses are

removed from the window sequence and replaced by the edges through
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which the path does not pass. See Figure 14. This generates a path through

the new window sequence which is iteratively improved (using the golden

S

~rotation

Figure 14. Rotation Vertex

ratio search) to achieve a locally optimal solution. If this path solution is

better than the previous solution, the new path is accepted. If the new path
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solution is worse than the previous solution, the decision to accept it is
-Ac

determined by the probability function P = e T This allows a means of

escaping from a possible local minimum and searching other areas of the

map for a better solution. See Figure 15. Kindl used the following control

parameters:

To= initial path cost

Tf = 1.0

R =.80

L =5

Ls =4

minimum

global minimum

Figure 15. The Cost Function for Multiple Window Sequences

2. Path Annealing for Anisotropic Regions

The control mechanism Kindl used will also work for anisotropic

path annealing. Temperature will control the program's probability of

accepting worse or degenerative solutions.
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The process which perturbs the path, or makes a "detour," is more

complicated. A simple replacement of edges based on a rotation vertex may

not produce a feasible window sequence. We must check the new edges to

determine whether we can travel between them at a valid heading.

To do this, we select a detour region. We designate the entry point

into the detour region as the detour start point. We assign the exit frontier of

the detour region as the detour frontier. The exit point of the region

immediately beyond the detour region is assigned as the detour goal point.

We now conduct an A* search similar to the search performed to produce the

initial window list. The search begins at the detour start point and terminates

under one of two conditions: 1) the detour goal point is :eached, or 2) an

upstream region is reached. An upstream region is a region in the window

list between the detour region and the (global) goal region. See Figure 16.

For the A* search we use frontier endpoints in addition to frontier

midpoints as nodes. This gives us greater resolution and often results in a

shorter detour. This procedure is particularly useful when searching across

regions that vary greatly in width.

This A* search is more restrictive than the search used to find the

initial region list. In addition to checking for valid heading ranges between

regions, we limit the length of the detour to no more than three regions.

This "tames" the search and prevents it from producing a circuitous detour

which would likely result in a path solution considerably longer than the

current solution.

32



G

detour-goal

detour-edge ", \ I
'A Il

detour region

detour-start

S

Figure 16. Finding a Detour

This procedure effectively eliminates many regions as candidate

detour regions. This is desirable, since we don't want to waste our time on

detours unlikely to produce a better path solution.

The A* search produces a detour region list. The detour region list is

processed into a window list and inserted into the current window list,

replacing the detour region(s). The resulting window list will contain at least
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one different region where the detour occurs, but it may contain up to two

new regions.

The golden ratio search is iteratively applied to the new window list

to determine a locally optimal (within tolerance) path solution. The frontier

crossing points of the windows retained from the previous window list serve

as a starting solution for this next search. The result is a faster search, since a

locally optimal solution already exists for path segments before and beyond

the detour region(s).

Once the locally optimal path is found, we compare it to the current

best path. If the current path is shorter, it becomes the best path. If the

current path is longer than the best path and not accepted by the annealing

control mechanism, the previous window list is restored and a new region is

randomly selected for a detour.

The number of detours attempted is determined by a loop structure

and the preset value L, and the maximum number of accepted moves any a

given temperature is L.

We initially use the probability function mentioned previously,
-AC

P = e T . We use Kindl's values for control parameters, except for R, where

we use .70.

Since our relatively simple map provides few opportunities to exploit

path annealing, we also experiment with a linear probability function

P = T. The number of detour attempts allowed is a function of the length of

the window list. We also discard the value L,, which governs the maximum

number of accepted moves at a given value of T. The temperature T is
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reduced by a constant R (i.e. T = T - R) after every L detour attempts. The

results are compared in Chapter VI.

We always keep track of the current path solution and the best path

solution. We also maintain a path list. A new path solution is added to the

path list if it is accepted as the current solution. The path list allows us to

provide alternate path solutions which may be longer than the best path, but

are nevertheless feasible path solutions.
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VI. EMPIRICAL STUDIES

A. INPUT MAPS AND VEHICLES

1. Maps

Our input map, derived from Ross, is not particularly suited to

exploiting the annealing process. The regions are largely symmetrical and

oblong. This arrangement often permits the A* search to produce the

optimal window list instead of relying on the annealing process to find it. In

this case, most of the effort is spent in merely confirming that we have

already located the best path. However, there are some cases where annealing

produces a better solution. In our test cases, we display the path solution

produced by the A* search as well as the solution found by annealing.

We use two maps. The maps appear identical, but the second map

contains regions weighted in proportion to their slopes. All regions in the

first map have a weight of 1. Figures 17 and 18 are included to show map

features. Figure 17 shows a path found by the A* search. Figure 18 shows the

path solution after annealing. Heading range indicators for the vehicle are

drawn at each point where the path crosses a frontier.

2. Vehicle

We use three vehicles for the evaluation. Vehicle-1 and vehicle-3 are

adapted from Ross [Ref. 1] and represent, respectively, an armored personnel

carrier and a cargo truck. Vehicle-2 cannot climb as steep a slope as vehicle-1,

but its sideslope stability is greater. We did this to see how much the path

between a common start and goal varies for different vehicles.
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cost: 187.4
time: 29868

IT

V 1"

Figure 17. Path before Annealing
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cost: 161.0
time: 107348

Figure 18. Path after Annealing
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B. TEST PROCEDURES

A direct comparison of our implementation to Ross's is not possible since

Ross used Flavors on a Symbolics LISP machine while we use Allegro

Common LISP on a Solbourne workstation. We are not certain whether

Ross's time computations include all overhead, output, and display

procedures. Also, our map is slightly modified from Ross's. The slope of

some regions was changed to be more consistent with vertex elevations. All

regions in Ross's map are equally weighted, therefore a comparison of our

performance with the weighted map would be invalid.

We do observe the performance of our implementation based on

different vehicles, temperature cooling schedules, and maps. For our time

computation (msec), we include all processes, beginning with input of the

start and goal points. We also include time allocated to updating displays and

input/output.

We evaluate the path annealing process with two different probability
-AC

functions, the cost-based exponential function P = e T , and the linearly

decreasing function P = T. Table 2 shows the results of this comparison for

vehicle-1 and Table 3 shows the results for vehicle-2. The temperature and

the initial path cost in the exponential function influences the number of

detours attempted as well as the probability of accepting a degenerative path

solution. In the linearly decreasing function, the number of detours

attempted is dependent on length of the window list and the probability of

acceptipg a degenerative path solution begins with a constant initial
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temperature and decreases at a constant rate during each iteration until it

reaches the freezing temperature.

TABLE 2. EQUALLY WEIGHTED REGIONS WITH VEHICLE-1

vehicle-1 A* linear p exponential p

start goal cost time cost time cost time

(221.0 399.0) (260.0 193.0) 187.4 29868 161.0 107348 187.4 159951

(229.0 127.0) (305.0 344.0) 233.2 16850 204.8 34284 204.7 40784

(399.0 217.0) (561.0 239.0) 127.4 15467 127.4 41599 127.4 64667

(271.0 415.0) (266.0 194.0) 208.8 18317 199.1 58517 199.1 87466

(77.0 339.0) (364.0 297.0) 222.8 23917 222.8 100617 222.8 144850

TALE 3. EQUALLY WEIGHTED REGIONS WITH VEHICLE-2

vehicle-2 A* linear p exponential p

start goal cost time cost time cost time

(221.0 399.0) (260.0 193.0) 127.7 35483 109.7 82200 109.7 217533

(229.0 127.0) (305.0 344.0) 156.3 20600 156.3 39366 156.3 115684

(399.0 217.0) (561.0 239.0) 89.0 17434 51.15 103717 80.5 107083

(271.0 415.0) (266.0 194.0) 176.7 21366 176.7 39700 176.7 88450

(77.0 339.0) (364.0 297.0) 222.8 24199 217.9 63501 222.8 179266

We also tested the annealing process on the weighted region map. The

results are shown in Tables 4 and 5.
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TABLE 4. WEIGHT PROPORTIONAL TO SLOPES WITH VEHICLE-1

vehicle-1 A* linear p exponential p

start goal cost time cost time cost time

(221.0 399.0) (260.0 193.0) 282.4 27550 259.1 16517 253.1 201034

(229.0 127.0) (305.0 344.0) 238.6 10516 238.6 16001 238.6 30100

(399.0 217.0) (561.0 239.0) 109.7 31466 109.7 14900 109.7 52066
(271.0 415.0) (266.0 194.0) 328.8 17834 328.8 38183 328.8 69000

(77.0 339.0) (364.0 297.0) 433.4 20889 433.4 96483 433.4 46949

TABLE 5. WEIGHT PROPORTIONAL TO SLOPE WITH VEHICLE-2

vehicle-2 A* linear p exponential p

start goal cost time cost time cost time

(221.0 399.0) (260.0 193.0) 281.1 30449 216.0 158816 278.4 229483

(229.0 127.0) (305.0 344.0) 238.6 10533 238.6 35384 238.6 62167
(399.0 217.0) (561.0 239.0) 79.1 38233 79.1 44634 79.1 90000

(271.0 415.0) (266.0 194.0) 347.8 20966 347.8 29784 347.8 68850
(77.0 339.0) (364.0 297.0) 445.6 20617 445.6 46234 445.6 96284

C ANALYSIS OF TEST RESULTS.

The results support the conclusion that path annealing can improve

upon an initial A* search solution in the 2i dimensional weighted region

problem. However, the stochastic approach may possess disadvantages.

Because detours are chosen randomly, we are not guaranteed of achieving the

same solution for multiple runs of the program. Even if multiple runs

produce the same solution, we don't know when the best solution was found.

It may be found on the first detour, or it may be found only after making

many detours.
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If time is limited, we should be able to halt the program prematurely and

return the current best solution. The randomness of choosing a detour

region virtually assures that a program repeatedly halted at the same point

will return different current solutions for the same start and goal.

A possible cure for this is to select a detour region based on a heuristic

evaluation. We should attempt to detour through regions with a high

potential for reducing the current path solution. A relatively high cost region

or a path segment with a sharp change in direction may be promising

candidates for a detour. This area warrants further study.

In our test cases, the linearly decreasing probability function works as well

as the exponential probability function as far as finding the best path.

Execution time is !ess for the former, however, this observation is based on

very limited testing and is probably dependent on the shapes and sizes of map

regions.
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VII. SUMMARY AND CONCLUSIONS

Finding the optimal path solution through complex and varied terrain is

expensive in terms of time and computer resources. Often heuristics can be

applied to find a near-optimal or otherwise acceptable path solution in much

less time. Several efforts have been made to locate feasible paths through

two-dimensional terrain. This work expands Kindl's stochastic path
1

planning approach to the 21 dimensional weighted region problem.

It is important to begin with a good initial window list. This is

accomplished by an A* search. The effectiveness of path annealing is

probably dependent on characteristics of the terrain, but further study is

needed in this area. Random annealing works, but a heuristic approach to

annealing should be explored. For example, it may prove beneficial to detour

around high cost regions.

To be certain of finding the globally optimal solution, one must

exhaustively search every feasible window sequence. Ross shows that this

can be prohibitively expensive in terms of time and computational effort. A

heuristic and stochastic approach produces a timely and acceptable path

solution, but random detours will not always return the same path solution

for a given start and goal.

The basic concept is shown to work in the LISP implementation. We do

not guarantee an optimal or near-optimal path solution will be found. We

do begin with a feasible starting solution and iteratiavely attempt to improve

it under the control of the golden ratio search tolerances and the annealing

temperature.
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Suggested extensions to this research include testing and evaluating the

performance of this implementation on various terrain models,

incorporating a terrain mapping program, developing heuristic evaluation

functions for selecting detour regions, and the use of parallel processing to

simultaneously compute multiple window sequences.
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APPENDIX A. NOTES ON THE IMPLEMENTATION

1. The implementation program was written in Common LISP with X
Windows and run on a Solburne Workstation. The system possesses
its own operating system, 16 Megabytes of RAM, and runs at a clock
speed of 33 MHz.

2. The emphasis was on producing a working prototype with efficiency a
secondary priority. Many of the routines used in this program were
more efficiently implemented using C++ and Prolog by Kindl. We
perform very little pre-processing on the map data, preferring instead
to calculate as we conduct the search. In an application where one map
is extensively used, pre-processing would undoubtedly prove more
efficient.

3. We used only the simplest data structures. The program is essentially
constructed with LISP's defstruct, cond, if, dolist, cons, append
functions. Sequential doubly linked lists were used instead of arrays,
hash tables, or binary trees. The intent was to prodace simple and
readable code (as far as this is possible in LISP).

4. Local variables were primarily used. We only used global variables for
such data as the start/goal points, window lists, region lists, accuracy
control variables, and annealing control variables.

5. There is no elaborate user interface. The user can use the setf
command to change vehicles. The start and goal points are input by
using the mouse.
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APPENDIX B. SOURCE CODE (COMMON LISP)

Filename: start.cl

By: HILTON, Cary A.

Date: May 91

Function: Startup file for anisotropic path planning.

1. creates and activates window *map*

2. loads file "find.cl"

3. to hagin, type "(path)", then
click left mouse button on
start, goal points

(use-package :cw)
(require :xcw)
(initiali ze-cornon-windows)

(defvar *mpap*)
(defvar *first-win*)
(defvar *win-nu*)

(defvar *x-.min* 0)
(defvar *xmx 695)
(defvar *x...max* 600)
(defvar *y-.min* 25)
;(defvar *y..ipax* 838)
(defvar *y..max* 830)

(setf *map*
(make-window-stream
:left *x-.min*
:bottom *y..min*
:width *x-.max*
:height *y...max*
:title "MAP WINDOW"))

(activate *map*)

(load "find.cl")

47



Filename: find.cl

By: HILTON, Cary A.

Date: May 91

Function: Control structures for program.
1. loads all files necessary

to run program (except "start.cl")
2. sets default maps and vehicles
3. contains top level control program

(load "anneal.cl")
(load "converge. cl")
(load "costf.cl")
(load "drawf.cl")
(load "geometry. cl")
(load "links.cl")
(load "partition. cl")
(load "search.cl")
(load "vehicle.cl")
(load "map2.cl")

; commands to load compiled files

(load "anneal.fasl")
(load "converge.fasl")
(load "costf.fasl")

; (load "drawf.fasl")
; (load "geometry.fasl")
; (load "links.fasl")
; (load "partition.fasl")
; (load "search.fasl")
;(load "vehicle.fasl")

; (load "map2.fasl")

(defstruct path
region
point
heading
cost)

(defvar *start*) ; global start point
(defvar *goal*) ; global goal-point
(defvar *rlist*) ; path passes through region list
(defvar *winlist*) ; processed window list
(defvar *init-win*) ; first window in window list
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(defvar *first-win*) ;second window in window list

(defvar *Path-list* nil)
(defrar *current-.path* nil)
(defvar *best-.path* nil)
(defvar *new-path* nil)
(defvar *random-.value*)
(defvar *accept-path* .5) ; this is the annealing "temperature"

;when temperature reaches 0, no
;degenerate paths will be accepted

(defvar *1-move* 4)
(defvar *l...accept* 4)
(defvar *reduction-factor* 0.7)
(defvar *temp-f* 1.0)
(defconstant *e* 2.71828)

;Default vehicle is vehicle-l

(setf *vehicle* (vehicle-rad vehicle-i))

(setf *vehicle* (vehicle-rad vehicle-2))

(setf *vehicle* (vehicle-rad vehicle-3))

;(load "lmap3.cil")

; (load "lmap3.fasl")

(defun get-start (0
(let (mouse-p)

(pprint "click mouse on start point")
(setf mouse-p (get-position *map*))
(setf *start* (cons (float (position-x mouse-p))

(list (float (position-y mouse-p)))))
(draw-start *start*)
(pprint *start*)))

(defun get-goal (
(let (mouse-p)

(pprint "click mouse on goal point")
(setf mouse-p (get-position *map*))
(setf *goal* (cons (float (position-x mouse-p))

(list (float (position-y mouse-p)))))
(draw-goal *goal*)
(pprint *goal*)))

(defun create-window-list (start goal)
(setf *winlist* (change-struct start goal *rlist*))
(double-link (first *winlist*) (rest *winlist*))
(setf *init-win* (first *winlist*))
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(setf *first-.win* (segment-next-win *init..win*))
(setf *win-num* (segment-index (first (last *winlist*)))))

(defun path ()
(setf *best-path* nil)
(setf *path-.list* nil)
(setf *current-path* nil)
(clear *map*)
(draw-regions *global.region..list*)

; (get-start)
; (get-goal)

(find-path *start* *goal*)
(loop

(cond (*bad-.segments*
(detour-at (first *bad-segments*))
(qdraw)

(converge *first..win*)))
; (draw-final *first.win*)

(if (null *bad-segments*)
(return))

(setf *current-.path* (store-path *first-win*))
(setf *best-.path* *current..path*)
(setf *Path..4ist* (append *path-list*

(list *current-path*)))
(anneal-path) ; linear cooling
(anneal-path2) ; exponential cooling

nil)

(defun anneal-path (
(let ((detour-region) (attempts) ;"attempts" is assigned the

number
(detour-count 0) (move-prob) ;of regions in the region list
(visited))

(loop
(setf attempts (segment-index

(first (last *wifllist*))))
(setf detour-region (random-region))

(pprint "detour-region:") (pprint detour-region)
(unless (memberp detour-region visited)

(detour-at detour--region)
(cond (*detour..rlist*

(qdraw)
(converge *first-.win*)
(draw-final *first-.win*)
(setf *current-path* (store-path *first..win*))
(setf *accept..path*
(-.. *accept-path* 0.1))
(cond ((or (null *best-path*)

(< (first *current-path*)
(first *best-.path*)))
(setf *best-path* *current-path*)
(setf *path-list* (append *path-list*

(list *current-path*))))
(t

(setf move-prob UI (random 100) 100))
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(if (or (> (first *current-path*)

*infinity*))

(> move-prob *accept-path*))
(restore-path)))))

(setf visited (append visited
(list detour-region)))) ; end unless

(incf detour-count)
(if (>- detour-count attempts)
(return))) ; end loop

(draw-best-path *best-path*)
(print-stored-costs *path-list*))) ; end let, defun

(defun anneal-path2 ()
(let ((temp (first *best-path*))

(accepted 0) (prob)
(detour-region) (visited)
(delta-c) (decision-point))

(unless (> *temp-f* temp)
(loop
(dotimes (index *l-move*)

(setf detour-region (random-region))
(unless (memberp detour-region visited)

(detour-at detour-region)
(cond (*detour-rlist*

(qdraw)
(converge *first-win*)
(draw-final *first-win*)
(setf *current-path* (store-path *first-win*))
(setf delta-c (- (first *current-path*)

(first *best-patb*)))
(cond ((and (< accepted *l-accept*)

(< delta-c 0))
(incf accepted)

(setf *path-list*
(append *path-list*

(list *best-path*)))
(setf *best-path* *current-path*))
(t
(setf prob
(expt *e* (- (U delta-c temp))))
(setf decision-point (U (random 100) 100))
(if (or (> (first *current-path*)

*infinity*)
(> decision-point prob))

(restore-path)))))) ; end cond
(setf visited (append visited

(list detour-region))))) ; end unless,
dotimes

(setf temp (* temp *reduction-factor*))
(if (<= temp *temp-f*)

(return)))) ; end loop, unless
(draw-best-path *best-path*)
(print-stored-costs *path-list*))) ;end let, defun

(defun find-path (start goal)
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(let ((start-region (find-region *start*))
(goal-region (find-region *goal*))
(path-cost))

(pprint "start-region: ")(pprint start-region)
(pprint "goal-region: ")(pprint goal-region)

(cond ((eq start-region goal-region)
(setf *rlist* (list start-region))

(pprint "*rlist*: ")(pprint *rlist*)
(create-window-list start goal)
(setf path-cost

(check-direct-path start goal *first-win*))
(unless (null path-cost)

(setf (segment-cost *first-win*)
path-cost)

(pprint "heading: ")
(pprint (rad-to-deg (angle (cons *start*

(list *goal*)))))
(pprint "path-cost: ")
(pprint path-cost)
(draw-direct -start* *goal* *first-win*))))

(cond ((null path-cost)
(setf *rlist* (region-search start goal

start-region
goal-region))

(cond (*rlist*
(pprint "*rlist*: ")(pprint *rlist*)
(create-window-list start goal)

(qdraw)
(converge *first-win*)
(draw-final *first-win*))

(t
(pprint "no solution"))))))) ; end cond, cond let,

defun

(defun check-direct-path (pl p2 current)
(let* ((edge-t (cons pl (list p2)))

(hdg-t (angle edge-t)))
(cond ((inside-rb hdg-t (segment-critical-b *first-win*)

(segment-dual-b *first-win*))
(b-cost pl p2 nil nil))
((inside-pl hdg-t (segment-critical-p *first-win*)

(segment-dual-p *first-win*))
(p-cost (pl p2 *first-win*)))
((inside-pl hdg-t (segment-critical-i *first-win*)

(segment-dual-i *first-win*))
nil)
((inside-rb hdg-t (segment-critical-r *first-win*)

(segment-dual-r *first-win*))
nil)
(t
(i-cost pl p2 *first-win*)))))

(defun store-path (init)
(let ((current init)
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(path-cost 0)
(temp) (path-list))

(loop
(setf temp (make-path

:region (segment-region current)
:point (segment-exit-point current)
:heading (segment-heading current)
:cost (segment-cost current)))

(setf path-cost (+ path-cost (segment-cost current)))
(setf path-list (append path-list (list temp)))
(setf current (segment-next-win current))
(if (null current)
(return)))

(append (list path-cost) path-list)))

(defun print-best-path (path-list)
(let* ((cost (first path-list))

(segments (rest path-list)))
(dolist (element segments)
(pprint " --------- ")

(pprint "point:") (pprint (path-point element))
(pprint "heading:") (pprint (path-heading element))
(pprint "cost:") (pprint (path-cost element)))
(pprint " --------- ")
(pprint "path-cost:") (pprint cost)
(pprint " --------- ")))

(defun print-stored-costs (path-list)
(pprint " --------- ")
(pprint "alternate path costs:")
(pprint " ------ )

(cond (path-list
(dolist (path path-list)

(setf segments (rest path))
(dolist (element segments)

(pprint " -------- ")
(pprint "point:") (pprint (path-point element))
(pprint "heading:") (pprint (path-heading element))
(pprint "cost:") (pprint (path-cost element)))
(pprint " --------- ")

(pprint "path-cost:") (pprint (first path))))
(t
(pprint "no improvements found"))))
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; Filename: anneal.cl

; By: HILTON, Cary A.

; Date: May 91

; Function: Performs path annealing.

1. detours around path segments
with an impermissible heading

2. performs random path annealing

3. uses A* search from a detour start point
to a detour goal point

4. detour path cannot pass through more than
3 regions

(defvar *detour..rlist* nil)
(defvar *detour-start* nil)
(defvar *detour-goal* nil)
(defvar *upstrea regions* nil)
(defvar *downstream-regions* nil)
(defvar *droot* nil)

(defvar *save-link-begin*)
(defvar *save-link-end*)
(defvar *restore-link-begin*)
(defvar *restore-link-end*)

(defun find-region-in-winlist (target-region)
(let ((current-window *first-win*))

(loop
(if (eq (segment-region current-window)

target-region)
(return)

(setf current-window (segment-next-win
current-window))))

current-window))

(defun find-index-in-winlist (win-num)
(let ((current-window *first-win*))

(loop
(if (eq (segment-index current-window)

win-num)
(return)

(setf current-window (segment-next-win
current-window))))

(segment-region current-window)))
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(defun detour (avoid-region)
(let ((start-region) (goal-region)

(detour-start) (detour-goal)
(avoid-edge)
(window))

(setf window (find-region-in-winlist avoid-region))
(setf detour-start (segment-exit-point

(segment-prior-win window)))
(setf detour-goal (segment-exit-point

(segment-next-win window)))
(setf start-region (segment-region window))
(setf goal-region (segment-region

(segment-next-win window)))
(setf avoid-edge (segment-frontier window))
(setf *upstream-regions* (get-upstream avoid-region *rlist*))

(setf *downstream-regions* (get-downstream avoid-region
*rlist*))

(setf *detour-rlist* (anneal-search detour-start
detour-goal
start-region
goal-region
avoid-edge))))

(defun get-downstream (region rlist)
(let (downstream)

(loop
(if (or (null rlist)

(eq region (first rlist)))
(return))

(setf downstream
(append downstream (list (first rlist))))

(setf rlist (rest rlist)))
downstream))

(defun get-upstream (region rlist)
(loop

(if (or (null rlist)
(eq region (first rlist)))

(return)
(setf rlist (rest rlist))))

(rest rlist))

(defun anneal-search (start goal
start-region
goal-region
avoid-edge)

(let* ((active-region start-region)
(prior-edge (cons start (list start)))

(current-edge) (node-triple)
(active-node) (active-node-cost)
(est-to-goal) (cost-tot 0) (temp-node)
(prior-node start) (prior-region start-region)
(prior-cost 0)
(back-path (list start-region)) (rlist))
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;(pprint "detour start point:")
;(pprint start)
;(pprint "detour start region:")
;(pprint start-region)
;(pprint "detour goal point:")
;(pprint goal)
;(pprint "detour goal region:")
;(pprint goal-region)

(setf *droot* nil)
(setf current-node (make-node

:point start
:edge nil

:region start-region
:chain nil

:cost 0
:cost-est 0

:prior nil
:next nil))

(loop
(dolist (element (polygon-alist (eval active-region)))
(unless (or (> (length (node-chain current-node)) 2)

(and (eq element prior-region)
(not (eq start-region goal-region)))

(virtual-obstacle element)
(and (memberp element (node-chain current-

node))
(not (eq start-region goal-region)))

(memberp element *downstream-regions*))

(setf current-edge (find-edge (eval active-region)
(eval element)))

(setf current-edge
(cons (eval (first current-edge))

(list (eval (second current-edge)))))
(unless (or (null (first current-edge))

(null (valid-entry prior-edge current-edge
active-region))

(equal current-edge avoid-edge))

(setf node-triple (append
(list (mid-point (first current-edge)

(second current-edge)))
(list (first current-edge))
(list (second current-edge))))

(dolist (active-node node-triple)
(setf active-node-cost
(+ (w-distance prior-node active-node

(polygon-weight (eval active-region)))
prior-cost))
(draw-dotted (cons active-node (list prior-node)))

(setf est-to-goal (distance active-node goal))
(setf cost-tot est-to-goal)

(setf cost-tot (+ active-node-cost est-to-goal))
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(setf temp-node (make-node
:point active-node

:edge current-edge
:region element
:chain back-path

:cost active-node-cost
:cost-est cost-tot

:prior nil
:next nil))

(setf *droot* (insert-node temp-node *droot*))) ; end
dolist

))) ;end unless, unless, unless, dolist

(if (null *droot*)
(return)
(setf current-node *droot*))

(setf back-path (append (node-chain current-node)
(list (node-region current-node))))

(setf prior-cost (node-cost current-node))
(if (memberp (node-region current-node) *upstream-regions*)

(return))
(setf prior-edge (node-edge current-node))
(setf *droot* (node-next *droot*))
(setf prior-region active-region)
(setf prior-node (node-point current-node))
(setf active-region (node-region current-node))) ; end loop

(if (eq (node-region current-node) goal-region)
(draw-dotted (cons (node-point current-node)

(list goal))))
(setf rlist (append (node-chain current-node)

(list (node-region current-node))))
(if (memberp (first (last rlist))

*upstream-regions*)
rlist

nil)))

(defun detour-at (detour-segment)
(let ((detour-rlist) (detour-winlist)

(detour-start) (detour-goal)
(index) (save-frontier) (save-length)
(detour-region detour-segment))

(cond (detour-segment
(setf detour-rlist (detour detour-region))

(cond (detour-rlist
(setf detour-start (find-region-in-winlLst detour-

region))
(setf detour-goal (find-region-in-winlist

(first (last detour-rlist))))
(setf save-frontier (segment-frontier detour-goal))
(setf save-length (segment-frontier-length detour-

goal))
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(setf *detour-winlist*
(change-struct
(segment-exit-point detour-start)
(segment-exit-point detour-goal)
detour-rlist))

(double-link (first *detour-winlist*) (rest *detour-
winlist*))

(setf (segment-next-win (first (last *detour-winlist*)))
nil)
(setf (segment-frontier (first (last *detour-winlist*)))
save-frontier)
(setf (segment-frontier-length (first (last *detour-

winlist*)))
save-length)
(setf *save-link-begin* detour-start)
(setf *restore-link-begin* (segment-prior-win detour-

start))
(setf (segment-next-win *restore-link-begin*)

(second *detour-winlist*))
(setf (segment-prior-win (second *detour-winlist*))
*restore-link-begi n*)
(unless (null (segment-next-win detour-goal))
(setf *save-link-end* detour-goal)
(setf *restore-link-end*

(segment-next-win detour-goal))
(setf (segment-prior-win

*restore-link-end*)
(first (last *detour-winlist*)))

(setf (segment-next-win (first (last *detour-winlist*)))
*restore-link-end*))
(renumber-indices)))))))

(defun renumber-indices ()
(let ((current *init-win*) (index 0))

(setf *first-win*
(segment-next-win *init-win*))

(loop
(setf (segment-index current) index)
(setf current (segment-next-win current))
(incf index)
(if (null current)
(return))))) ;end loop, let, defun

(defun random-region ()
(let ((detour-num) (detour-region)

(win-num))
(setf *win-num*

(segment-index (first (last *winlist*))))
(setf detour-num (random *win-num*))
(if (< detour-num 1)
(setf detour-num 1))

(find-index-in-winlist detour-num)))

(defun restore-path ()
(setf (segment-next-win *restore-link-begin*)
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*save-.link-begin*)
(setf (segment-prior-win *save-link-begin*)
*restore-link-.begin*)

(if *restore..link.end*
(setf (segment-prior-win *restore-link-end*)
*save.link..end*))

(setf (segment-next-win *save-link-.end*)
*restore.link..end*)

(setf *first-.win* (segment-next-win
*init-win*))

(renumber-indices)
nil)
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; Filename: converge.cl

; By: HILTON, Cary A.

; Date: May 91

Function: Control structure for the golden ratio search
routine.

1) setf tolerances which determine when to
stop the search

2) computes current path cost

(defvar *edge-tolerance* 12) ; edge length during golden
; ratio search

(defvar *point-tolerance* 6) ; crossing point displacement
; used in "converge"

(defvar *precision* ; halt search if improvement of
; current cost is less than this

value
(setf *lcount* 6) ; Max number of outer loops
allowed

during "converge"

(defun converge (current)
(let ((anchored 1) (count 0)

(current-cost 0) (prev-cost *infinity*))
(loop

(setf anchored 1)
(loop

(unless (or (null (segment-next-win current))
(= (segment-frontier-length current) 0))

(if (and (= (first (segment-exit-point current))
(first (segment-exit-point (segment-next-win

current))))
(= (second (segment-exit-point current))

(second (segment-exit-point (segment-next-win
current)))))

(snip (segment-next-win current)))
(adjust-crossing current)

(if (> (segment-displ current) *point-tolerance*)
(setf anchored 0))) ; end unless

(if (null (segment-next-win current))
(return)

(setf current (segment-next-win current)))) ;end loop
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(incf count)
(setf prev-cost current-cost)
(setf current-cost (calc-path-cost *first-win*))

(pprint "path cost")(pprint current-cost)
(if (or (plusp anchored)

(trivial-improvement
prev-cost current-cost)

(< *lcount* count))
(return)

(setf current *first-win*))) ; end loop
(pprint "*lcount*")
(pprint count)))

(defun trivial-improvement (cl c2)
(let ((diff (- cl c2)))

(if (or (> c2 cl)
(< (/ diff cl)

*precision*))
t

nil)))

(defun calc-path-cost (element)
(let ((tot 0))

(loop
(setf tot (+ tot (segment-cost element)))
(setf element (segment-next-win element))
(if (null element)
(return)))

tot))

; "snip" removes a window from
; the window list. It is
; not used in current version.

(defun snip (element)
(pprint "snipping: ")
(pprint (segment-region element))

(if (eq element *first-win*)
(setf *first-win* (segment-next-win *first-win*)))

(if (not (null (segment-prior-win element)))
(setf (segment-next-win (segment-prior-win element))

(segment-next-win element)))
(if (not (null (segment-next-win element)))

(setf (segment-prior-win (segment-next-win element))
(segment-prior-win element))))
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Filename: costf.cl

By: HilTON, Cary A.

; Date: May 91

Function: Contains cost functions for all possible
combinations of heading ranges between
two regions.

1. gets pre-point, pre-range, frontier,
post-point, post-range, current,
then bianches to appropriate cost function.

2. returns cost, crossing point, and heading range
combination

********************* ********************************************

(defvar *interval* .) ; used to space points along a segment.

(defun costf (from pre-range edge to post-range current loop-flag)
(c nd ((or (eq pre-range 's)

(eq post-range 's))
(hi-search from edge to current loop-flag pre-range post-

range))
((eq pre-range 'i)
(cond ((eq post-range 'i)

(ii-search from edge to current loop-flag))
((eq post-range 'p)

(ip-search from edge to current loop-flag))
((eq post-range 'b)

(ib-search from edge to current loop-flag))))
((eq pre-range 'p)
(cond ((eq post-range 'i)

(pi-search from edge to current loop-flag))
((eq post-range 'p)

(pp-search from edge to current loop-flag))
((eq post-range 'b)

(pb-search from edge to current loop-flag))))
((eq pre-range 'b)
(cond ((eq post-range 'i)

(bi-search from edge to current loop-flag))
((eq post-range 'p)

(bp-search from edge to current loop-flag))
((eq post-range 'b)

(bb-search from edge to current loop-flag))))))

* **** ***********************************-* *******

high-cost search
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(defun hi-search (from edge to current loop-flag pre-range post-
range)

(let* ((xl) (yl) (x2) (y2)
(pl) (p2) (p 3 ) (p4)

(dx) (dy) (ranges)
(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (U (- x2 xl) *interval*)))
(setf dy (fround (/ (- y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))

(cond ((eq pre-range 's)
(setf prel (hi-cost from pl current))
(setf pre2 (hi-cost from p2 current))

(setf pre3 (hi-cost from p3 current))
(setf pre4 (hi-cost from p4 current)))

(t
(setf prel (i-cost from pl current))
(setf pre2 (i-cost from p2 current))

(setf pre3 (i-cost from p3 current))
(setf pre4 (i-cost from p4 current))))

(cond ((eq post-range 's)
(setf postl (hi-cost pl to (segment-next-win

current)))
(setf post2 (hi-cost p2 to (segment-next-win

current)))
(setf post3 (hi-cost p3 to (segment-next-win

current)))
(setf post4 (hi-cost p4 to (segment-next-win

current))))
(t
(setf postl (i-cost pl to (segment-next-win

current)))
(setf post2 (i-cost p2 to (segment-next-win

current)))
(setf post3 (i-cost p3 to (segment-next-win

current)))
(setf post4 (i-cost p4 to (segment-next-win

current)))))

(setf cl (+ prel postl))
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(setf c2 (+ pre2 post2))
(setf c3 (+ pre3 post3))

(setf c4 (+ pre4 post4))
(setf c-min (min cl c2 c3 c4))

(if (< c2 c3)
(setf edge (cons p1 (list p3 )))

(setf edge (cons p2 (list p4))))
(setf edge-length (distance (first edge)

(second edge)))
(if (or (null loop-flag)

(< edge-length *edge-tolerance*))
(return)))

(setf ranges (cons pre-range (list post-range)))
(cond ((= c-min cl)

(append (list cl) (list prel) (list postl) (list p1) (list
ranges)))

((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

ranges)))
((= c-min c3)
(append (list c3) (list pre3) (list post3) (list p3) (list

ranges)))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list ranges))))))

isotropic-to-isotropic search

(defun ii-search (from edge to current loop-flag)
(let* ((crossing-pt)

(path-leg)
(prel) (pre2)
(postl) (post2)
(cl) (c2))

(setf path-leg (cons from (list to)))
(setf crossing-pt (find-int path-leg edge))

(cond ((null crossing-pt)
(setf prel (i-cost from

(first edge)
current))

(setf postl (i-cost (first edge)
to
(segment-next-win
current)))

(setf pre2 (i-cost from
(second edge)
current))

(setf post2 (i-cost (second edge)
to
(segment-next-win
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current)))
(setf cl (+ prel posti))
(setf c2 (+ pre2 post2))

(if (< cl c2)
(append (list cl) (list prel)

(list postl) (list (first edge)) (list 'I(i i)))

(append (list c2) (list pre2)
(list post2) (list (second edge)) (list '(i i)))))
(t
(setf prel (i-cost from

crossing-pt
current))

(setf postl (i-cost crossing-pt
to
(segment-next-win
current)))

(setf cl (+ prel postl))
(append (list cl) (list prel)

(list postl) (list crossing-pt) (list '(i i)))))))

isotropic-to-power search

(defun ip-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl) (p2) (p3 ) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* I))
(new-pt (segment-exit-point current))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (U (- x2 xi) *interval*)))
(setf dy (fround (/ (- y2 yi) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))
(setf prel (i-cost from pl current))
(setf postl (p-cost pl to (segment-next-win current)))
(setf pre2 (i-cost from p2 current))
(setf post2 (p-cost p2 to (segment-next-win current)))

(setf pre3 (i-cost from p3 current))
(setf post3 (p-cost p3 to (segment-next-win current)))

(setf pre4 (i-cost from p4 current))
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(setf post4 (p-cost p4 to (segment-next-win current)))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))

(cond ((- c-min cl)
(append (list cl) (list prel) (list postl) (list pl) (list

'(i p))))
((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

'(i p))))
((= c-min c3)
(append (list c3) (list pre3) (list post3) (list p3) (list

I(i P))))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list '(i p))) ))

•*** *** * *** ****** * ***** *****

; isotropic-to-braking search

(defun ib-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl) (p2) (p3) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (/ (- x2 xl) *interval*)))
(setf dy (fround (U (- y2 yl) *interval*)))
(setf p2 (cons (+ x1 dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))
(setf prel (i-cost from pl current))
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(setf postl (b-cost pi to
(segment-frontier current)

(segment-frontier
(segment-next-win current))))

(setf pre2 (i-cost from p2 current))
(setf post2 (b-cost p2 to

(segment-frontier current)
(segment-frontier

(segment-next-win current))))
(setf pre3 (i-cost from p3 current))

(setf post3 (b-cost p3 to
(segment-frontier current)

(segment-frontier
(segment-next-win current))))

(setf pre4 (i-cost from p4 current))
(setf post4 (b-cost p4 to

(segment-frontier current)
(segment-frontier

(segment-next-win current))))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3 )))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))

(cond ((= c-min cl)
(append (list cl) (list prel) (list postl) (list pl) (list

,(i b))))
((- c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

'(i b))))
((- c-min c3)
(append (list c3) (list pre3) (list post3) (list p3) (list

,(i b))))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list '(i b)) )))

; power-to-isotropic search

(defun pi-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl) (p2) (p3) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
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(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (/ (- x2 xl) *interval*)))
(setf dy (fround (/ (-y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy)))) (setf prel (p-cost from pl
current))

(setf postl (i-cost pl to (segment-next-win current)))
(setf pre2 (p-cost from p2 current))
(setf post2 (i-cost p2 to (segment-next-win current)))

(setf pre3 (p-cost from p3 current))
(setf post3 (i-cost p3 to (segment-next-win current)))

(setf pre4 (p-cost from p4 current))
(setf post4 (i-cost p4 to (segment-next-win current)))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))

(cond ((= c-min cl)
(append (list cl) (list prel) (list postl) (list pl) (list

'(p i))))
((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

'(p i))))
((= c-min c3)
(append (list c3) (list pre3) (list post3) (list p3) (list

'(p i))))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list '(p i)) ) )

power-to-power search
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(defun pp-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl) (p2) (p3) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4 ))
(setf y2 (second p4))

(setf dx (fround (/ (- x2 xl) *interval*)))
(setf dy (fround (/ (- y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy)))) (setf prel (p-cost from
pl current))

(setf postl (p-cost pl to (segment-next-win current)))
(setf pre2 (p-cost from p2 current))
(setf post2 (p-cost p2 to (segment-next-win current)))

(setf pre3 (p-cost from p3 current))
(setf post3 (p-cost p3 to (segment-next-win current)))

(setf pre4 (p-cost from p4 current))
(setf post4 (p-cost p4 to (segment-next-win current)))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))

(cond ((= c-min cl)
(append (list cl) (list prel) (list postl) (list pl) (list

'(p p))))
((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

, (p p))))
((- c-min c3)
,append (-lit c3) (list pre3) (list post3) (list p3) (list

'(p p))))
(t
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(append (list c4) (list pre4) (list post4) (list p4)
(list ' (p p))) ))

power-to-braking search

(defun pb-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl) (p2) (p3) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (/ (- x2 xl) *interval*)))
(setf dy (fround (/ (- y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))
(setf prel (p-cost from pl current))

(setf postl (b-cost pl to
(segment-frontier current)

(segment-frontier
(segment-next-win current))))

(setf pre2 (p-cost from p2 current))
(setf post2 (b-cost p2 to

(segment-frontier current)
(segment-frontier
(segment-next-win current))))

(setf pre3 (p-cost from p3 current))
(setf post3 (b-cost p3 to

(segment-frontier current)
(segment-frontier
(segment-next-win current))))

(setf pre4 (p-cost from p4 current))
(setf post4 (b-cost p4  to

(segment-frontier current)
(segment-frontier

(segment-next-win current))))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-rain (min cl c2 c3 c4))
(if (< c2 c3)
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(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4 ))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))

(cond ((= c-min cl)
(append (list cl) (list prel) (list postl) (list pl) (list

'(p b))))
((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

,(p b))))
((= c-min c3)
(append (list c3) (list pre3) (list post3) (list p3) (list

'(p b))))
(t

(append (list c4) (list pre4) (list post4) (list p4 )
(list '(p b)))))))

braking-to-isotropic search

(defun bi-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2 )

(pl) (p2) (p3) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (/ (-x2 xl) *interval*)))
(setf dy (fround (/ (-y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))
(setf prel (b-cost from pl

(segment-frontier
(segment-prior-win current))

(segment-frontier current)))
(setf postl (i-cost pl to (segment-next-win current)))
(setf pre2 (b-cost from p2

(segment-frontier
(segment-prior-win current))

(segment-frontier current)))
(setf post2 (i-cost p2 to (segment-next-win current)))

71



(setf pre3 (b-cost from p3

(segment-frontier (segment-prior-win
current))

(segment-frontier current)))
(setf post3 (i-cost p3 to (segment-next-win current)))

(setf pre4 (b-cost from p4
(segment-frontier (segment-prior-win

current))
(segment-frontier current)))

(setf post4 (i-cost p4 to (segment-next-win current)))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))
(cond ((= c-min cl)

(append (list cl) (list prel) (list postl) (list pl) (list
S(b i))))

((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

'(b i))))
((= c-min c3)
(append (list c3) (list pre3) (list post3) (list p3) (list

'(b i))))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list I'(b i)) ) )

; braking-to-power search

(defun bp-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl) (p2) (p3) (p4)
(dx) (dy)

(prel) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(new-pt (segment-exit-point current))
(cl) (c2) (c3) (c4) (c-min))

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
(setf yl (second pl))
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(setf x2 (first p4))
(setf y2 (second p4))

(setf dx (fround (/ (- x2 xl) *interval*)))
(setf dy (fround (U (- y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))
(setf prel (b-cost from pl

(segment-frontier
(segment-prior-win current))

(segment-frontier current)))
(setf postl (p-cost pl to (segment-next-win current)))
(setf pre2 (b-cost from p2

(segment-frontier
(segment-prior-win current))

(segment-frontier current)))
(setf post2 (p-cost p2 to (segment-next-win current)))

(setf pre3 (b-cost from p3
(segment-frontier

(segment-prior-win current))
(segment-frontier current)))

(setf post3 (p-cost p3 to (segment-next-win current)))
(setf pre4 (b-cost from p4

(segment-frontier
(segment-prior-win current))

(segment-frontier current)))
(setf post 4 (p-cost p4 to (segment-next-win current)))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))

(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))

(cond ((= c-min cl)
(append (list cl) (list prel) (list postl) (list pl) (list

'(b p))))
((- c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

'(b p))))
((- c-min c3)
(append (list c3) (list pre3) (list post3) (list p3 ) (list

'(b p))))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list '(b p)))))))
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braking-to-braking search

(defun bb-search (from edge to current loop-flag)
(let* ((xl) (yl) (x2) (y2)

(pl (first (segment-frontier current)))
(p4 (second (segment-frontier current)))
(p2) (p3)

(dx) (dy)
(path-leg)

(distl) (dist2)
(pre!) (pre2) (pre3) (pre4)
(postl) (post2) (post3) (post4)
(edge-length (+ *edge-tolerance* 1))
(cl) (c2) (c3) (c4) (c-min))
(cond ((equal (third pl)

(third p4 ))
(setf path-leg (cons from (list to)))
(setf pl (find-int path-leg edge))

(cond ((null pl)
(setf distl (+ (i-cost from

(first edge)
current)

(i-cost (first edge)
to
(segment-next-win
current))))

(setf dist2 (+ (i-cost from
(second edge)
current)

(i-cost (second edge)
to
(segment-next-win
current))))

(if (< distl dist2)
(setf pl (first edge))

(setf pl (second edge)))))

(setf prel (b-cost from pl
(segment-frontier
(segment-prior-win current))
(segment-frontier current)))

(setf postl (b-cost pl to
(segment-frontier current)

(segment-frontier
(segment-next-win current))))

(setf cl (+ prel postl))
(append (list cl) (list prel)

(list postl) (list pl) (list '(b b))))
(t

(loop
(setf pl (first edge))
(setf p4 (second edge))

(setf xl (first pl))
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(setf yl (second pl))
(setf x2 (first p4 ))
(setf y2 (second p4))

(setf dx (fround (U (- x2 xl) *interval*)))
(setf dy (fround (U (- y2 yl) *interval*)))
(setf p2 (cons (+ xl dx)

(list (+ yl dy))))
(setf p3 (cons (- x2 dx)

(list (- y2 dy))))
(setf prel (b-cost from pl

(segment-frontier (segment-prior-win
current))

(segment-frontier current)))
(setf postl (b-cost pl to

(segment-frontier current)
(segment-frontier (sey, ent-next-win

current))))
(setf pre2 (b-cost from p2

(segment-frontier (segment-prior-win
current))

(segment-frontier current)))
(setf post2 (b-cost p2 to

(segment-frontier current)
(segment-frontier (segment-next-win

current))))
(setf pre3 (b-cost from p3

(segment -frontier (segment-prior-win
current))

(segment-frontier current)))
(setf post3 (b-cost p3 to

(segment-frontier current)
(segment-frontier (segment-next-win

current)
(setf pre4 (b-cost from p4

(segment-frontier (segment-prior-win
current))

(segment-frontier current)))
(setf post4 (b-cost p4 to

(segment-frontier current)
(segment-frontier (segment-next-win

current))))
(setf cl (+ prel postl))
(setf c2 (+ pre2 post2))
(setf c3 (+ pre3 post3))
(setf c4 (+ pre4 post4))

(setf c-min (min cl c2 c3 c4))
(if (< c2 c3)

(setf edge (cons pl (list p3)))
(setf edge (cons p2 (list p4))))

(setf edge-length (distance (first edge)
(second edge)))

(if (or (null loop-flag)
(< edge-length *edge-tolerance*))

(return)))
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(cond ((= c-min cl)
(append (list c!) (list prel) (list postl) (list pl) (list

'(b b))))
((= c-min c2)
(append (list c2) (list pre2) (list post2) (list p2) (list

'(b b))))
((= c-min c3)
(appenid (list c3) (list pre3) (list post3) (list p3) (list

'(b b))))
(t

(append (list c4) (list pre4) (list post4) (list p4)
(list '(b b)))))))))

If no intersection, assume
; heading is on a critical
; angle and return mid-point
; of segment as switch-point.

(defun switch-point (pl p2 hdgl hdg2)
(let ((rayl (calc-ray pl hdgl))

(ray2 (calc-ray p2 hdg2))
(int-pt))
(setf int-pt (line-int rayl ray2))
(if (null int-pt)
(mid-point pl p2)
int-pt)))

(defun i-cost (pl p2 current)
(w-distance pl p2 (segment-weight current)))

(Uerun p-cost (pl p2 current)
(let ((sw-point (switch-point pl p2 (segnent-critical-p current)

(+ pi (segment-dual-p curi-,t)))))
(+ (i-cost p1 sw-point current)
(i-cost sw-point p2 current))))

; the function s;.itch-point 1b in "geometry.ci"

; Note b-cost gets different arguments than i-cost, p-cost

(defun b-cost (pl p2 edgel edge2)
(let ((elevl) (elev2))

(cond ((third p1)
(setf elevl (third p1)))

((equal p1 *start*)
(setf elevl (find-elev pl (first *rlist*))))

(t
(setf elevl (calc-elev pl edgel))))

(cond ((third p2)
(setf e:ev2 (third p2)')
((equal p2 *goal*)
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(setf elev2 (find-elev p2 (first (last *rlist*)))))
(t
(setf elev2 (calc-elev p2 edge2))))

(abs (- elevi elev2))))

(defun hi-cost (p1 p2 current)
(if (and (equal (first p1) (first p2))

(equal (second p1) (second p2)))
0

(+ (w-distance p1 p2 (segment-weight current))
*infinity*))
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Filename: drawf.cl

By: HILTON, Cary A.

; Date: May 91

Function: Various drawing functions

1. draws map, path segments, heading ranges

2. computes segment headings, segment costs

(defvar *bad-segments* nil) ; list of path segments
; with impermissible headings

(defun draw-regions (rlist)
(let ((polygon) (vlist))
(dolist (element rlist)

(setf polygon (eval element))
(setf vlist (polygon-vlist polygon))
(draw-edge (first vlist)

(first (last vlist)))
(loop

(if (null (rest vlist))
(return))

(draw-edge (first vlist)
(second vlist))

(setf vlist (rest vlist))))))

(defun draw-region (region)
(let* ((r (eval region))

(vlist (polygon-vlist r)))
(draw-edge (first vlist)

(first (last vlist)))
(loop

(if (null (rest vlist))
(return))

(draw-edge (first vlist)
(second vlist))

(setf vlist (rest vlist)))))

(defun draw-edge (xyzl xyz2)
(let ((pl (eval xyzl))

(p2 (eval xyz2)))
(draw-line-xy *map* (first pl) (second pl)

(first p2 ) (second p2)
:width 2)))

(defun draw-dotted (edge)
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(let ((pl (first edge))
(p2 (second edge)))

(draw-line-xy *map* (first pl) (second pl)
(first p2) (second p2)

:dashing 2
:width 2)))

(defun draw-start (s)
(draw-filled-circle-xy *map* (first s)

(second s)
3))

(defun draw-goal (g)
(draw-circle-xy *map* (first g)

(second g)
3))

(defun draw-path-dots (current)
(loop

(cond ((null current)
(return))

(t
(draw-filled-circle-xy *map* (first (segment-exit-

point current))
(second (segment-exit-

point current)) 2)))
(setf current (segment-next-win current))))

(defun draw-path-lines (current)
(loop

(cond ((null current)
(return))

(t
(draw-line-xy *map*

(first (segment-exit-point
(segment-prior-win current)))

(second (segment-exit-point
(segment-prior-win current)))

(first (segment-exit-point current))
(second (segment-exit-point current))

:dashing 3)))
(setf current (segment-next-win current))))

(defun draw-final (current)
(let ((path-cost 0) (heading))
(setf *bad-segments* nil)
(loop

(cond ((null current)
(return))

(t
(unless (- (segment-cost current) 0.0)

(pprint " ---------------
(pprint "region")

(pprint (segment-region current))
(setf heading (rad-to-deg (angle
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(cons (segment-exit-point
(segment-prior-win current))
(list

(segment-exit-point current))))))
(setf (segment-heading current) heading)

(pprint "segment heading")
(pprint heading)

(pprint "segment-cost")
(pprint (segment-cost current))

(cond ((illegal-heading current)
(cond ((> (segment-cost current)

*infinity*)
(setf *bad-segments*
(append *bad-segments*

(list (segment-region current))))))
(setf path-cost
(+ path-cost (segment-cost current)))
(draw-line-xy *map* (first (segment-exit-point

(segment-prior-win current)))
(second (segment-exit-point

(segment-prior-win current)))
(first (segment-exit-point current))

(second (segment-exit-point
current))

:dashing 3)
(draw-ranges (segment-exit-point

(segment-prior-win current)) current))))
(if (null (segment-next-win current))
(draw-ranges *goal* current))
(setf current (segment-next-win current)))

(pprint "path-cost =")
(pprint path-cost)
(cond ((null *bad-segments*)

(pprint "valid headings for all segments"))
(t

(pprint "impermissible path segments at:")
(pprint *bad-segments*)))))

(defun draw-best-path (path)
(let* ((path-cost (first path))

(path-segments (rest path))
(prior-point *start*)
(current (first path-segments)))

(clear *map*)
(draw-regions *global-region-list*)
(draw-filled-circle-xy *map* (first *start*)

(second *start*)
3)

(loop
(if (null current)

(return))
(unless (- (path-cost current) 0.0)

(pprint " ------------
(pprint "region")

(pprint (path-region current))

80



(pprint "segment heading")
(pprint (path-heading current))

(pprint "segment-cost")
(pprint (path-cost current))

(draw-line-xy *map* (first (path-point current))
(second (path-point current))

(first prior-point)
(second prior-point)

:dashing 4)
(draw-circle-xy *map* (first (path-point current))

(second (path-point current))
3)) ; end unless

(setf prior-point (path-point current))
(setf path-segments (rest path-segments))

(setf current (first path-segments))) ; end loop
(pprint "-------- 1 )
(pprint "best path cost:")
(pprint path-cost)))

(defun draw-direct (pl p2 current)
(draw-line-xy *map* (first pl) (second pl)

(first p2) (second p2)
:dashing 3)

(draw-ranges pl *first-win*)
(draw-ranges p2 *first-win*))

(defun draw-bounds (element)
(loop

(unless (or (null element)
(= (segment-cost element) 0.0))

(draw-ranges (segment-exit-point
(segment-prior-win element)) element)

(if (null (segment-next-win element))
(draw-ranges (segment-exit-point

(segment-prior-win current)) element)
(setf element (segment-next-win element))
(if (null element)
(return))))))

(defun draw-circle (current)
(draw-circle-xy *map* (first (segment-exit-point current))

(second (segment-exit-point current)) 2))

(defun draw-dot (current)
(draw-filled-circle-xy *map* (first (segment-exit-point

current))
(second (segment-exit-point current)) 2))

(defun draw-d (point)
(draw-filled-circle-xy *map* (first point)

(second point) 2))
(defun whiteout (current)

(let ((pl (segment-exit-point (segment-prior-win current)))
(p2 (segment-exit-point current))
(p3 (segment-exit-point (segment-next-win current))))
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(setf (window-stream-foreground-color *map*) white)
(draw-line-xy *map* (first pl) (second pl)

(first p2) (second p2))
(draw-line-xy *map* (first p2) (second p2)

(first p3) (second p3))
(setf (window-stream-foreground-color *map*) black)))

(defun draw-current (element)
(unless (null (segment-prior-win element))

(draw-line-xy *map* (first (segment-exit-point (segment-prior-
win element)))

(second (segment-exit-point (segment-prior-win
element)))

(first (segment-exit-point element))
(second (segment-exit-point element))
:dashing 4))

(unless (null (segment-next-win element))
(draw-line-xy *map* (first (segment-exit-point element))

(second (segment-exit-point element))
(first (segment-exit-point (segment-next-win

element)))
(second (segment-exit-point (segment-next-win

element)))
:dashing 4)))

(defun draw-r (pl p2)
(unless (or (null pl)

(null (first p2)))
(draw-line-xy *map* (first pl) (second pl)

(first (first p2)) (second (first p2)))))

(defun qdraw ()
(clear *map*)
(draw-start *start*)
(draw-goal *goal*)
(draw-regions *global-region-list*)
(draw-path-lines *first-win*))

(defun draw-r (pl p2)
(unless (or (null pl)

(null (first p2)))
(draw-line-xy *map* (first pl) (second pl)

(first (first p2)) (second (first p2 )))))
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Filename: geometry.cl

By: HILTON, Cary A.

Date: May 91

Function: contains geometric spatial
reasoning functions

1. includes functions to determine angles of line
segments,

and critical angles for power, sideslope, and
braking

limits
2. determines if a vehicle heading is inside

a non-permissible heading range
S3. computes line intersections

******************* **********************************************

(setf *ray-length* 920) ; extend ray to intersect edge
(setf *radius* 12) ; radius for sideslope range icon
(setf *radius2* 8) ; radius for power range icon
(setf *offset* (/ pi 2)) ; orient north to 0 degrees

(defun angle (edge)
(let ((pl (first edge))

(p2 (second edge))
(offset (U pi 2))
(angle))

(if (or (eq pl nil) (eq p2 nil))
(setf angle nil)

(setf angle (- offset (atan (- (second p2) (second pl))
(- (first p2) (first pl))))))

(mod angle *pi2*)))

(defun angle-between (el e2)
(sin (abs (- (angle el) (angle e2)))))

(defun deg-to-rad (degrees)
(* degrees 0.0174533))

(defun rad-to-deg (radians)
(/ radians 0.0174533))

; accepts radian measure
(defun heading-p-b (slope limit)

(cond ((and (> slope 0)
(> slope (abs limit)))

(acos (U (tan limit) (tan slope))))
(t 0)))
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; accepts radian measure
(defun heading-s (slope limit)

(cond ((and (> slope 0)
(> slope limit))

(asin (/ (tan limit) (tan slope))))
(t 0)))

(defun calc-ray (point angle)
(let* ((x (+ (* *ray-length* (sin angle)) (first point)))

(y (+ (* *ray-length* (cos angle)) (second point)))

(end-pt (cons x (list y))))
(cons point (list end-pt))))

(defun find-region (point)
(let* ((region-list *global-region-list*)

(current-region (first region-list))
(inside))

(loop
(cond ((null region-list)

(return))
(t
(setf inside (inside-region point current-region))
(if inside
(return))

(setf region-list (rest region-list))
(setf current-region (first region-list)))))

inside))

(defun betweenp (a b x)
(or (and (>= x a) (<= x b))

(and (>= x b) (<= x a))))

(defun on-segment (edge point)
(let ((xl (first (first edge)))

(yl (second (first edge)))
(x2 (first (second edge)))
(y2 (second (second edge)))
(xt (first point))
(yt (second point)))

(and (and (betweenp xl x2 xt)
(betweenp yl y2 yt))

(zerop (- (* (- x2 xl) (- yt yl))
(* (- y2 yl) (- xt xl)))))))

(defun inside-region (point region)
(let* ((vlist (pclygon-vlist (eval region)))

(ray (calc-ray point pi))
(edge (cons (eval (first (last vlist)))

(list (eval (first vlist)))))
(intercept (find-int ray edge))
(cross-count 0))

(unless (null intercept)
(setf intercept (cons (float (first intercept))

(list (float (second intercept))))))
(if (cross-p ray edge)
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(incf cross-count))
(if (equal intercept (butlast (first edge) 1))

(incf cross-count))
(loop
(setf edge (cons (eval (first vlist))

(list (eval (second vlist)))))
(if (cross-p ray edge)

(incf cross-count))
(if (equal intercept (butlast (first edge) 1))

(incf cross-count))
(setf vlist (rest vlist))
(if (null (rest vlist))

(return)))
(if (oddp cross-count)

region
nil)))

; accepts radian measure
(defun draw-ranges (point current)

(let
((p-xl) (p-yl) (p-x2) (p-y2)
(r-xl) (r-yl) (r-x2) (r-y2)
(l-x3) (l-y3) (l-x4) (l-y 4 )
(b-xl) (b-yl) (b-x2) (b-y2)
(slope (segment-slope current)))

(unless (null (segment-critical-p current))
(setf p-xl (+ (* *radius2* (sin (segment-critical-p

current))) (first point)))
(setf p-yl (+ (* *radius2* (cos (segment-critical-p

current))) (second point)))
(setf p-x2 (+ (* *radius2* (sin (segment-dual-p current)))

(first point)))
(setf p-y2 (+ (* *radius2* (cos (segment-dual-p current)))

(second point))))

(unless (null (segment-critical-r current))
(setf r-xl (+ (* *radius* (sin (segment-critical-r current)))

(first point)))
(setf r-yl (+ (* *radius* (cos (segment-critical-r current)))

(second point)))
(setf r-x2 (+ (* *radius* (sin (segment-dual-r current)))

(first point)))
(setf r-y2 (+ (* *radius* (cos (segment-dual-r current)))

(second point))))

(unless (null (segment-critical-i current))
(setf l-x3 (+ (* *radius* (sin (segment-critical-i current)))

(first point)))
(setf l-y3 (+ (* *radius* (cos (segment-critical-i current)))

(second point)))
(setf l-x4 (+ (* *radius* (sin (segment-dual-i current)))

(first point)))
(setf l-y4 ( (* *radius* (cos (segment-dual-i current)))

(second point))))
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(unless (null (segment-critical-b current))
(setf b-xl (+ (* *radius* (sin (segment-critical-b current)))

(first point)))
(setf b-yl (+ (* *radius* (cos (segment-critical-b current)))

(second point)))
(setf b-x2 (+ (* *radius* (sin (segment-dual-b current)))

(first point)))
(setf b-y2 (+ (* *radius* (cos (segment-dual-b current)))

(second point))))

(draw-circle-xy *map*
(first point)
(second point)
*radius*
:dashing 5)

(cond ((> slope 0)
(if (> slope (vehicle-angle-p *vehicle*))

(draw-filled-triangle-xy *map*
(first point)
(second point)
p-xl
p-yl
p-x2
p-y2)

nil)
(cond ((> slope (vehicle-angle-s *vehicle*))

(draw-filled-triangle-xy *map*
(first point)
(second point)
r-xl
r-yl
r-x2
r-y2)

(draw-filled-triangle-xy *map*
tfirst point)
(second point)
l-x3
l-y3
l-x4
l-y4 ))

(t nil))
(if (> slope (abs (vehicle-angle-b *vehicle*)))
(draw-triangle-xy *map*

(first point)
(second point)
b-xl
b-yl
b-x2
b-y2
:dashing 3)

nil))
(t nil))))
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(defun sign (x)
(cond ((plusp x) 1)

((minusp x) -1)
((zerop x) 0)))

(defun area (pl p2 p3)
(- (* (- (first p2) (first pl)) (- (second p3) (second pl)))

(* (- (first p3) (first pl)) (- (second p2) (second pl)))))

(defun slope-and-int (pl p2)
(let ((xl (first pl))

(yl (second pl))
(x2 (first p2))
(y2 (second p2)))

(cond ((= xl x2) (list nil xl))
(t (list (/ (- y2 yl) (- x2 xl))(- y2 (* x2 ( (-y2 yl) (-x2 xl)))))))))

(defun find-pt (mbl mb2)
(let ((ml (first mbl))

(bl (second mbl))
(m2 (first mb2))
(b2 (second mb2)))

(cond ((equal ml m2)
(cond ((not (= bl b2)) (list nil nil))

(t (list nil bl))))
((eq ml nil) (list bl (+ b2 (* m2 bl))))
((eq m2 nil) (list b2 (+ bl (* ml b2))))
(t (list (fround (U (- b2 bl) (- ml m2)))

(fround (+ bl (* ml (I (- b2 bl) (- ml m2))))))))))

(defun cross-p (el e2)
(let ((pl (first el))

(p2 (second el))
(p3 (first e2))
(p4 (second e2)))

(if (and (/= (sign (area pl p2 p3))
(sign (area pl p2 p4)))

(/= (sign (area p3 p4 pl))
(sign (area p3 p4 p2 ))))

t
nil)))

; Find intersection of two segments

(defun find-int (el e2)
(let ((mb-one) (mb-two) (int))

(cond ((cross-p el e2)
(setf mb-one (slope-and-int (first el) (second el)))

(setf mb-two (slope-and-int (first e2) (second e2)))
(setf int (find-pt mb-one mb-two)))

(t nil))))

; Finds intersection of two lines
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(defun line-int (el e2)
(let ((mb-one (slope-and-int (first el) (second el)))

(mb-two (slope-and-int (first e2) (second e2))))
(find-pt mb-one mb-two)))

(defun find-valid-crossing (point current)
(let ((ray-t) (valid-point))

(setf ray-t (calc-ray point (segment-critical-r current)))
(setf valid-point (find-int ray-t (segment-frontier current)))
(if (null valid-point)

(setf ray-t (calc-ray point (segment-dual-r current)))
(setf valid-point (find-int ray-t (segment-frontier

current))))
(if (null valid-point)

(setf ray-t (calc-ray point (segment-critical-i current)))
(setf valid-point (find-int ray-t (segment-frontier

current))))
(if (null valid-point)

(setf ray-t (calc-ray point (segment-dual-i current)))
(setf valid-point (find-int ray-t (segment-frontier

current))))
valid-point))

(defun mark-pt (int)
(draw-filled-circle-xy *winl* (first int) (second int) 5))

(defun draw-line (line)
(draw-line-xy *winl* (first (first line)) (second (first line))

(first (second line)) (second (second line))
:brush-width 2))

(defun find-elev (point current)
(leL* ((region (eval current))

(crossing-pts (find-elev-points point region)))
(calc-elev point crossing-pts)))

(defun find-elev-points (point current)
(let ((vlist (polygon-vlist current))

(edge) (intl) (int2)
(elevl) (elev2)

(rayl (calc-ray point pi))
(ray2 (calc-ray point (* pi 2))))

(setf edge (cons (eval (first vlist))
(list (eval (first (last vlist))))))

(setf intl (find-int rayl edge))
(if intl
(setf elevl (calc-elev intl edge)))

(setf int2 (find-int ray2 edge))
(if int2
(setf elev2 (calc-elev int2 edge)))

(loop
(setf edge (cons (eval (first vlist))
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(list (eval (second vlist)))))
(cond ((null intl)

(setf intl (find-int rayl edge))
(if intl
(setf elevl (calc-elev intl edge)))))

(cond ((null int2)
(setf int2 (find-int ray2 edge))

(if int2
(setf elev2 ,calc-elev int2 edge)))))

(setf vlist (rest vlist))
(if (or (and intl int2)

(null (rest vlist)))
(return)))

(setf intl (append intl (list elevl)))
(setf int2 (append int2 (list elev2)))
(cons intl (list int2))))

(defun calc-elev (point edge)
(let* ((end-ptl (first edge))

(end-pt2 (second edge))
(edge-d) (point-d)

(low (min (third end-ptl) (third end-pt2)))
(elev-d (abs (- (third end-ptl)

(third end-pt2)))))
(cond ((= (first end-ptl)

(first end-pt2))
(setf edge-d (abs (- (second end-ptl)

(second end-pt2))))
(setf point-d (abs (- (second end-ptl)

(second point)))))
(t
(setf edge-d (abs (- (first end-ptl) (first end-pt2))))
(setf point-d (abs (- (first end-ptl) (first point))))))

(if (zerop elev-d)
(third end-ptl)

(+ (U (* point-d elev-d) edge-d) low))))

(defun calc-displ (pl p2)
(let ((xl (first pl))

(yl (second pl))
(x2 (first p2))
(y2 (second p2 )))

(+ (abs (- xl x2))
(abs (- yl y2)))))

(defun distance (pl p2)
(let* ((xl (first pl))

(yl (second pl))
(x2 (first p2))

(y2 (second p2))
(x (- x2 xl))
(y (- y2 yl)))

(sqrt (+ (*x x) (* y y)))))

(defun w-distance (pl p2 w)
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(let* ((xl (first pl))
(yl (second pl))
(x2 (first p2 ))

(y2 (second p2))
(x (- x2 xl))
(y (- y2 yl)))

(* (sqrt (+ (* x x) (* y y))) w)))

(defun find-edge (rl r2)
(let (edge)
(dolist (element (polygon-vlist rl) edge)

(if (memberp element (polygon-vlist r2))
(setf edge (append edge (list element)))))

(cond ((null (rest edge))
(append edge edge))
((and (equal (first edge)

(first (polygon-vlist rl)))
(equal (second edge)

(first (last (polygon-vlist rl)))))
(reverse edge))

(t
edge))))

(defun mid-point (pl p2)
(let ((xl (first pl))

(yl (second pl))
(x2 (first p2))
(y2 (second p2 )))

(cond ((or (eq nil xl)
(eq nil x2)) (list nil nil))

(t
(list (* 0.5 (+ xl x2)) (* 0.5 (+ yl y2 )))))))

(defun illegal-heading (current)
(let ((angle (angle (cons

(segment-exit-point (segment-prior-win current))
(list (segment-exit-point current)))))

(cr (segment-critical-r current))
(dr (segment-dual-r current))
(cl (segment-critical-i current))
(dl (segment-dual-i current)))

(if (or (inside-pl angle cl dl)
(inside-rb angle cr dr))

t
nil)))

(defun inside-pl (angle critical dual)
(cond ((> critical dual)

(if (and (< angle (- critical .0174))
(> angle (+ dual .0174)))

t
nil))

((> dual critical)
(if (and (> angle (- critical .0174))

(< angle (+ dual .0174)))
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nil
t))

(t nil)))

(defun inside-rb (angle critical dual)
(cond ((> critical dual)

(if (and (> angle (- dual .0174))
(< angle (+ critical .0174)))

nil
t))

((> dual critical)
(if (and (> angle (+ critical .0174))

(< angle (- dual .0174)))
t

nil))
(t nil)))

(defun virtual-obstacle (current)
(let* ((region (eval current))

(ps-rad (deg-to-rad (polygon-slope region)))
(vp-rad (deg-to-rad (vehicle-angle-p *vehicle*)))
(vs-rad (deg-to-rad (vehicle-angle-s *vehicle*)))
(critical-p (heading-p-b ps-rad vp-rad))
(critical-s (heading-s ps-rad vs-rad)))

(if (< critical-p critical-s)
t
nil)))

(defun valid-entry (edge-from edge-to region)
(let* ((r (eval region))

(pfl) (pf2) (ptl) (pt2)
(rotation)
(slope (deg-to-rad (polygon-slope r)))
(cr) (dr) (cl) (dl)
(hl) (h2) (hdgl) (hdg2))

(cond ((> slope
(vehicle-angle-s *vehicle*))

(setf pfl (first edge-from))
(setf pf2 (second edge-from))
(setf ptl (first edge-to))
(setf pt2 (second edge-to))
(setf rotation (deg-to-rad (polygon-orientation r)))
(setf cr (heading-s slope

(vehicle-angle-s *vehicle*)))
(setf dr (mod (+ (- pi cr) rotation) *pi2*))
(setf cl (mod (+ (- cr) rotation) *pi2*))
(setf dl (mod (+ (- cr pi) rotation) *pi2*))

(setf hl (cons pfl (list pt2)))
(setf h2 (cons pf2 (list ptl)))
(setf hdgl (angle hl))
(setf hdg2 (angle h2))

(setf cr (+ cr rotation))
(if (or (and (inside-rb hdgl cr dr)

(inside-rb hdg2 cr dr))
(and (inside-pl hdgl cl dl)
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(inside-pi hdg2 ci dl)))
nil

(t
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Filename: links2.cl

By: HILTON, Cary A.

Date: May 91

Function: Processes region list into window list

1. converts list into doubly linked
circular list

2. creates 'segment' structure for use in
evaluating window sequences.

3. computes critical headings,
initial crossing points,
edge common to adjacent regions

(setf *init* 0) ; initialize edge count: odd points to
left, even points to right
(setf *print-circle* 1) ; turn off print loop for circular data
structures (doubly linked lists)

(defconstant *pi2* (* pi 2))

(defstruct segment
index
region
exit-point
heading
prior-point
displ
frontier
frontier-length
weight
cost
next-win
prior-win
critical-p
dual-p
critical-r
dual-r
criti cal-l
dual-i
critical-b
dual-b
slope
orientation)

(defun memberp (item irpuL-list)
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(if input-list
(if (eq item

(first input-list))
t

(memberp item (rest input-list)))))

(defun double-link (head tail)
(unless (null tail)

(setf (segment-next-win head) (first tail))
(setf (segment-prior-win (first tail)) head)
(double-link (first tail) (rest tail))))

(defun change-struct (start goal rlist)
(let* ((win-t) (weight-t)

(exit-t) (aft-t) (next-t)
(verts) (edge-t) (hdg-t) (ray-t)
(r) (r-next)
(ptl) (pt2) (ecount 0)
(pwr-rad) (side-rad) (brk-rad)
(crit-p) (crit-r) (crit-l) (crit-b)
(cp) (dp) (cr) (dr)
(cl) (dl) (cb) (db)
(slope-rad) (oriented))

(if rlist
(setf win-t (list (make-segment :index 0

:region (first rlist)
:exit-point start

:frontier (cons
start
(list start))))))

(loop
(cond ((null rlist)

(return))
(t
(setf r (eval (first rlist)))
(setf r-next (eval (second rlist)))
(incf ecount)

I-,nd (r-next
(setf verts (find-edge r r-next))
(setf ptl (eval (first verts)))
(setf pt2 (eval (second verts))))

(t
(setf ptl goal)
(setf pt2 goal)))))

(setf edge-t (cons ptl (list pt2)))
(setf weight-t (polygon-weight r))
(setf slope-rad (deg-to-rad (polygon-slope r)))
(setf oriented (deg-to-rad (polygon-orientation r)))
(setf pwr-rad (vehicle-angle-p *vehicle*))
(setf side-rad (vehicle-angle-s *vehicle*))
(setf brk-rad (vehicle-angle-b *vehicle*))

(setf crit-p (heading-p-b slope-rad pwr-rad))
(setf crit-r (heqding-s slope-rad sirie-rad))

(setf crit-i (- crit-r))
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(setf crit-b (heading-p-b slope-rad brk-rad))
(setf cp (mod (+ crit-p oriented) *pi2*))
(setf dp (mod (+ (- crit-p) oriented) *pi2*))
(setf cr (mod (+ crit-r oriented) *pi2*))
(if (- crit-r crit-l)

(setf dr (mod (+ crit-r oriented) *pi2*))
(setf dr (mod (+ (- pi crit-r) oriented) *pi2*)))
(setf ci (mod (+ crit-l oriented) *pi2*))
(if (- crit-r crit-l)

(setf dl (mod (+ crit-l oriented) *pi2*))
(setf dl (mod (+ (- crit-r pi) oriented) *pi2*)))
(setf cb (mod (+ crit-b oriented) *pi2*))
(setf db (mod (+ (- crit-b) oriented) *pi2*))
(cond ((inside-rb cb cr dr)

(setf cb dr)
(setf db dl))

(cond ((oddp ecount) ;set point at
frontier endpoint

(setf exit-t (first edge-t)))
((evenp ecount)
(setf exit-t (second edge-t))))

(setf exit-t (mid-point ptl pt2) ;set point at
;frontier

midpoint

(setf temp (make-segment :index e, ount
:region (first rlist)
:exit-point exit-t

:prior-point exit-t
:displ (+ *Point..tolerance* 1)

:frontier edge-t
frontier-length
(distance (first edge-t)

(second edge-t))
:weight weight-t

:cost nil
:next-win nil
:prior-win nil
:slope slope-rad
:orientation oriented
:critical-p cp
:dual-p dp
:critical-r cr
:dual-r dr
:critical-l cl
:dual-l dl
:critical-b cb
:dual-b db))

(setf win-t (append win-t (list temp)))
(setf rlist (rest rlist))
(if (null rlist)
(return win-t)))))
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Filename: partition.cl

By: HILTON, Cary A.

Date: May 91

Function: These functions partition the
current window edge at the
points where the cost function
changes.

1. The possible cost functions are:
pp, pi, pb, ip, ii, ib
bp, bu, bb.
tt"p" = power range
I"i" = isotropic (unrestricted)
S"b" = braking range

2. performs golden ratio
search with appropriate cost functions.

(defvar *infinity* 65536) ; represents cost of "infinity"

(defvar *proot*) ; root for list of transition
; points along a frontier

(defstruct partition
displ
t-point
frontier
range
next
prior)

(defun insert-part (new root)
(let ((top root) (current root))

(cond ((null current)
(setf current new))

((< (partition-displ new) (partition-displ current))
(setf (partition-prior current) new)
(setf (partition-next new) current)
(setf current new))
(t (loop

(if (and (>= (partition-displ new) (partition-displ
current))

(not (null (partition-next current))))
(setf current (partition-next current))

(return)))
(cond ((< (partition-displ new) (partition-displ

current))
(setf (partition-next new) current)
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(setf (partition-prior new) (partition-prior
current))

(setf (partition-next (partition-prior current))
new)

(setf (partition-prior current) new)
(setf current top))
(t
(setf (partition-next new) nil)

(setf (partition-next current) new)
(setf (partition-prior new) current)

(setf current top)))))))

(defun insert-plist (plist)
(let (root)
(dolist (element plist root)

(setf root (insert-part element root)))))

(defun pre-part (current)
(let* ((point (segment-exit-point (segment-prior-win current)))

(edge (segment-frontier current))
(rcp) (rdp) (rcr) (rdr)
(rcl) (rdl) (rcb) (rdb)
(cp-int) (dp-int) (cr-int) (dr-int)
(cl-int) (dl-int) (cb-int) (db-int)

(plist))
(cond ((or (eq point (first edge))

(eq point (second edge)))
nil)
(t

(unless (= (segment-critical-p current)
(segment-dual-p current))

(setf rcp (calc-ray point (segment-critical-p current)))
(setf rdp (calc-ray point (segment-dual-p current)))

(setf cp-int (cons (find-int rcp edge) '(i)))
(setf dp-int (cons (find-int rdp edge) '(p))))

(unless (= (segment-critical-r current)
(segment-dual-r current))

(setf rcr (calc-ray point (segment-critical-r current)))
(setf rdr (calc-ray point (segment-dual-r current)))

(setf rcl (calc-ray point (segment-critical-i current)))
(setf rdl (calc-ray point (segment-dual-i current)))

(setf cr-int (cons (find-int rcr edge) '(s)))
(setf dr-int (cons (find-int rdr edge) '(i)))

(setf cl-int (cons (find-int rcl edge) '(i)))
(setf dl-int (cons (find-int rdl edge) '(s))))

(unless (= (segment-critical-b current)
(segment-dual-b current))

(setf rcb (calc-ray point (segment-critical-b current)))
(setf rdb (calc-ray point (segment-dual-b current)))

(setf cb-int (cons (find-int rcb edge) '(b)))
(setf db-int (cons (find-int rdb edge) '(i))))

(append (list dp-int) (list cr-int) (list dr-int) (list cb-int)
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(list db-int) (list dl-int) (list cl-int) (list dp-
int))))))

(defun post-part (current)
(let* ((point (segment-exit-point (segment-next-win current)))

(edge (segment-frontier current))
(rcp) (rdp) (rcr) (rdr)
(rcl) (rdl) (rcb) (rdb)
(cp-int) (dp-int) (cr-int) (dr-int)
(cl-int) (dl-int) (cb-int) (db-int)

(plist))
(cond ((or (eq point (first edge))

(eq point (second edge)))
nil)

(t

(unless (= (segment-critical-p (segment-next-win current))
(segment-dual-p (segment-next-win current)))

(setf rcp (calc-ray point (+ pi (segment-critical-p
(segment-next-win current)))))

(setf rdp (calc-ray point (+ pi (segment-dual-p
(segment-next-win current)))))

(setf cp-int (cons (find-int rcp edge) '(p)))
(setf dp-int (cons (find-int rdp edge) '(i))))

(unless (= (segment-critical-r (segment-next-win current))
(segment-dual-r (segment-next-win current)))

(setf rcr (calc-ray point (+ pi (segment-critical-r
(segment-next-win current)))))

(setf rdr (calc-ray point (+ pi (segment-dual-r
(segment-next-win current)))))

(setf rcl (calc-ray point (+ pi (segment-critical-i
(segment-next-win current)))))

(setf rdl (calc-ray point (+ pi (segment-dual-i
(segment-next-win current)))))

(setf cr-int (cons (find-int rcr edge) '(i)))
(setf dr-int (cons (find-int rdr edge) '(s)))

(setf cl-int (cons (find-int rcl edge) '(s)))
(setf dl-int (cons (find-int rdl edge) '(i))))

(unless (= (segment-critical-b (segment-next-win current))
(segment-dual-b (segment-next-win current)))

(setf rcb (calc-ray point (+ pi (segment-critical-b
(segment-next-win current)))))

(setf rdb (calc-ray point (+ pi (segment-dual-b
(segment-next-win current)))))

(setf cb-int (cons (find-int rcb edge) '(i)))
(setf db-int (cons (find-int rdb edge) '(b))))

(append (list cp-int) (list cr-int) (list dr-int) (list cb-int)
(list db-int) (list dl-int) (list cl-int) (list dp-

int))))))

(defun part (rl r2)
(let* ((frontier (segment-frontier rl))

(pre-point
(segment-exit-point (segment-prior-win rl)))

(t-point
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(first (segment-frontier rl)))
(post-point

(segment-exit-point r2))
(pre-trans-pts (pre-part rl))
(post-trans-pts (post-part rl))
(init-range)
(t-list)
(segment-t))

(setf t-list
(dolist (element pre-trans-pts t-list)

(unless (null (first element))
(setf temp (make-partition

:displ (calc-displ (first element) t-
point)

:t-point (first element)
:frontier 'pre
:range (second element)))

(setf t-list (append t-list (list temp))))))
(setf t-list

(dolist (element post-trans-pts t-list)
(unless (null (first element))

(setf temp (make-partition
:displ (calc-displ (first element) t-

point)
:t-point (first element)
:frontier 'post
:range (second element)))

(setf t-list (append t-list (list temp))))))
(setf temp (make-partition

:displ *infinity*
:t-point (second frontier)

:frontier nil
:range nil))

(setf t-list (append t-list (list temp)))
(setf *proot* (insert-plist t-list))))

(defun adjust-crossing (current)
(let* ((rl current) (r2 (segment-next-win current))

(pre-point
(segment-exit-point (segment-prior-win rl)))
(t-point (first (segment-frontier rl)))

(post-point (segment-exit-point r2))
(pre-segment .'cons pre-point (list t-point)))
(post-segment (cons t-point (list post-point)))
(best-frontier) (frontier-t) (best-range)
(end-ptl) (end-pt2) (ray-t)
(pre-range) (post-range)

(best-crossing)
(next-crossing) (loop-flag))

(setf pre-range (find-pre-range pre-segment rl))
(setf post-range (find-post-range post-segment r2))
(part rl r2)
(loop

(setf end-ptl t-point)
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(setf end-pt2 (partition-t-point *proot*))
(setf frontier-t (cons end-ptl (list end-pt2)))
(setf next-crossing (costf pre-point pre-range

frontier-t
post-point post-range

current
nil))

(cond ((or (null best-crossing)
(< (first next-crossing) (first best-crossing)))

(setf best-crossing next-crossing)
(setf best-frontier frontier-t)
(setf best-range (fifth best-crossing))))

(if (equal (partition-frontier *proot*) 'pre)
(setf pre-range (partition-range *proot*))
(setf post-range (partition-range *proot*)))

(setf *proot* (partition-next *proot*))
(if (null *proot*)
(return)
(setf t-point (second frontier-t)))) ; end loop

(setf best-crossing (costf pre-point
(first best-range)

best-frontier
post-point

(second best-range)
current

t))

(cond ((< (first best-crossing)
(+ (segment-cost rl)
(segment-cost r2)))

(setf (segment-prior-point rl) (segment-exit-point rl))
(whiteout current)
(draw-region (segment-region current))
(setf (segment-cost rl) (second best-crossing))
(setf (segment-cost r2) (third best-crossing))
(setf (segment-exit-point rl) (fourth best-crossing))
(draw-current current)
(setf (segment-displ rl)
(calc-displ (segment-prior-point rl)

(segment-exit-point rl))))))) ; end cond, let
defun

(defun print-plist (current)
(pprint "plist")
(loop

(pprint (partition-t-point current))
(pprint (partition-range current))
(pprint" ---------------- )
(setf current (partition-next current))
(if (null current)
(return))))
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(defun calc-pre-range (heading current)
(cond ((inside-pl heading

(segment-critical-p current)
(segment-dual-p current))

1p)
((inside-rb heading

(segment-critical-r current)
(segment-dual-r current))

's)
((inside-pl heading

(segment-critical-i current)
(segment-dual-i current))

Is)
((inside-rb heading

(segment-critical-b current)
(segment-dual-b current))

'b)
(t i)))

(defun calc-post-range (heading current)
(cond ((inside-pl heading

(+ pi (segment-dual-p current))
(+ pi (segment-critical-p current)))

1p)
((inside-rb heading

(+ pi (segment-dual-r current))
(+ pi (segment-critical-r current)))

Is)
((inside-pl beading

(+ pi (segment-dual-i current))
(+ pi (segment-critical-i current)))

's)
((inside-rb heading

(+ pi (segment-dual-b cuil-fnt))
(+ pi (segment-critical-b current)))

'b)
(t 'i)))

(defun find-post-range (segment region)
(let ((hdg) (range))

(if (eq (first segment)
(second segment))

(setf hdg
(angle (segment-frontier

(segment-prior-win region))))
(setf hdg (angle segment)))

(setf range (calc-pre-range hdg region))))

(defun find-pre-range (segment region)
(let ((hdg) (range))

(if (eq (first segment)
(second segment))

(setf hdg
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(angle (segment-frontier region)))
(setf hdg (angle segment)))
(setf range (calc-pre-range hdg region))))
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Filename: start.cl

By: HILTON, Cary A.

Date: May 91

Function: A* search returns list of regions
connecting start and goal points.

1. heuristic: current cost + weighted distance to
goal

2. attempts to screen path segments for
impermissible headings

(defvar *nroot* nil)

This structure forms a linked list
ordered by cost which determines
the next node for expansion during
the A* region search.

(defstruct node
point
edge
chain
region
cost
cost-est
prior
next)

(defun region-search (start goal
start-region
goal-region)

(let* ((active-region start-region)
(prior-edge (cons start (list start)))
(current-edge)
(active-node) (active-node-cost)
(est-to-goal) (cost-tot 0) (temp-node)
(prior-node start) (prior-region) (prior-cost 0)
(back-path (list start-region)) (rlist))

; (pprint "start point is in region:")
; (pprint *start*) (pprint start-region)
; (pprint "goal point is in region:")
; (pprint *goal*) (pprint goal-region)

(setf *nroot* nil)
(setf current-node (make-node

:point start
:edge nil

:region start-region
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:chain nil
:cost 0

:cost-est 0
:prior nil

:next nil))

;(pprint "detour-region")(pprint detour-region)
(loop

(dolist (element (polygon-alist (eval active-region)))
(unless (or (and (eq element prior-region)

(not (eq start-region goal-region)))
(virtual-obstacle element)

(and (memberp element (node-chain current-
node))

(not (eq start-region goal-region))))
(setf current-edge (find-edge (eval active-region)

(eval element)))
(setf current-edge (cons (eval (first current-edge))

(list
(eval (second current-edge)))))

(unless (or (null (first current-edge))
(null (valid-entry prior-edge current-edge

active-region)))

(setf active-node (mid-point (first current-edge)
(second current-edge)))

(setf active-node-cost
(+ (w-distance prior-node active-node

(polygon-weight (eval active-region)))
prior-cost))

(draw-dotted (cons active-node (list prior-node)))
(setf est-to-goal (distance active-node goal))
(setf cost-tot (+ active-node-cost est-to-goal))
(setf temp-node (make-node

:point active-node
:edge current-edge

:region element
:chain back-path

:cost active-node-cost
:cost-est cost-tot

:prior nil
:next nil))

(setf *nroot* (insert-node temp-node *nroot*))))) ;end
unless, unless, dolist

(if (null *nroot*)
(return)
(setf current-node *nroot*))

(setf back-path (append (node-chain current-node)
(list (node-region current-node))))

(setf prior-cost (node-cost current-node))
(if (eq (node-region current-node) goal-region)
(return))

104



(setf prior-edge (node-edge current-node))
(setf *nroot* (node-next *nroot*))
(setf prior-region active-region)
(setf prior-node (node-point current-node))
(setf active-region (node-region current-node)))

(draw-dotted (cons (node-point current-node)
(list goal)))

(setf rlist (append (node-chain current-node)
(list (node-region current-node))))

(if (eq (first (last rlist)) goal-region)
rlist

nil)))

(defun insert-node (new root)
(let ((top root) (current root))

;(pprint "inside insert-node")
(cond ((null current)

(setf current new))
((< (node-cost-est new) (node-cost-est current))
(setf (node-prior current) new)
(setf (node-next new) current)
(setf current new))
(t (loop

(if (and (>= (node-cost-est new) (node-cost-est
current))

(not (null (node-next current))))
(setf current (node-next current))

(return)))
(cond ((< (node-cost-est new) (node-cost-est

current))
(setf (node-next new) current)
(setf (node-prior new) (node-prior current))
(setf (node-next (node-prior current)) new)

(setf (node-prior current) new)
(setf current top))
(t
(setf (node-next new) nil)

(setf (node-next current) new)
(setf (node-prior new) current)

(setf current top)))))))
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Filename: vehicle.cl

By: HILTON, Cary A.

* Date: May 91

* Function: Vehicle model.

1. vehicle is defined by its power, sideslope and
* braking limits.

2. angles are measured in degrees but converted
by the program to radian measures.

3. default is vehicle-2

4. to change to another vehicle, enter:
(setf *vehicle* (vehicle-rad vehicle-x))

(defstruct vehicle
angle-p
angle-s
angle-b)

(defvar vehicle-i (make-vehicle :angle-p 31.0
:angle-s 17.0

:angle-b -10.0))

(defvar vehicle-2 (make-vehicle :angle-p 26.0
:angle-s 22.0
:angle-b -5.0))

(defvar vehicle-3 (make-vehicle :angle-p 31.0
:angle-s 17.0

:angle-b -5.0))

(defvar vehicle-4 (make-vehicle :angle-p 7.8
:angle-s 9.0
:angle-b -8.0))

(defun vehicle-rad (vehicle)
(make-vehicle :angle-p (deg-to-rad (vehicle-angle-p vehicle))

:angle-s (deg-to-rad (vehicle-angle-s vehicle))
:angle-b (deg-to-rad (vehicle-angle-b vehicle))))
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Filename: niap2.cl

By: HILTON, Cary A.

Date: May 91

Function: Contains map data.

*1. defines vertices, edges, and polygons within
the map boundaries

2. specifies which vertices and edges each polygon
is made f rom,

3. contains adjacency list for polygons

This map closely resembles the map used
by Ron Ross.

(defstruct edge
pt 1
pt2)

(defstruct polygon
vlist
slope
orientation
weight
alist)

Global vertex list

(setf *global..vertex-list* '(vi v2 v3 v4 v5 v6 v7 v8 v9
viO vii vi2 vi3 v14 v15 v16 v17 vi8 v19
v20 v2i v22 v23 v24 v25 v26 v27 v28 v29
v30 v3J. v32 v33 v34 v35 v36 v37 v38 v39
v40 v4i v42 v43 v44 v45))

Global polygon list

(setf *global..region-list* '(ri r2 r3 r4 r5 r6 r7 r8 r9
r10 nil r12 ri3 r14 r15 r16 r17 r18 r19
r20 r2i r22 r23 r24 r25 r26 r27 r28 r29
r30 r31 r32 r33 r34 r35 r36 r37 r38))

(setf gi *global.region.list*)
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(setf vl '(352.0 96.0 14.5))
(setf v2 '(480.0 224.0 14.5))
(setf v3 '(400.0 304.0 14.5))
(setf v4 '(272.0 176.0 14.5))

(setf v5 '(24C.0 320.0 9.0))
(setf v6 '(240.0 448.0 9.0))
(setf v7 '(112.0 448.0 9.0))
(setf v8 '(112.0 320.0 9.0))

(setf v9 '(192.0 368.0 27.75))
(setf vlO '(160.0 368.0 27.75))
(setf vll '(192.0 400.0 27.75))
(setf v12 '(160.0 400.0 27.75))

(setf v13 '(352.0 160.0 35.75))
(setf v14 '(416.0 224.0 35.75))
(setf v15 '(400.0 240.0 35.75))
(setf v16 '(336.0 176.0 35.75))

(setf v17 '(352.0 112.0 18.0))
(setf v18 '(464.0 224.0 18.0))
(setf v19 '(400.0 288.0 18.0))
(setf v20 '(288.0 176.0 18.0))

(setf v2i '(352.0 48.0 0.0))
(setf v22 '(528.0 224.0 0.0))
(setf v23 '(400.0 352.0 0.0))
(setf v24 '(224.0 176.0 0.0))

(setf v25 '(208.0 352.0 19.5))
(setf v26 '(208.0 416.0 19.5))
(setf v27 '(144.0 416.0 19.5))
(setf v28 '(144.0 352.0 19.5))

(setf v29 '(256.0 304.0 9.0))
(setf v30 '(256.0 464.0 9.0))
(setf v31 '( 96.0 464.0 9.0))
(setf v32 '( 96.0 304.0 9.0))

(setf v33 '(288.0 272.0 0.0))
(setf v34 '(288.0 496.0 0.0))
(setf v35 '( 64.0 496.0 0.0))
(setf v36 '( 64.0 272.0 0.0))

(setf v37 ( 0.0 790.0 0.0))
(setf v38 '(600.0 790.0 0.0))
(setf v39 '(600.0 496.0 0.0))
(setf v40 '(600.0 224.0 0.0))
(setf v41 '(600.0 0.0 0.0))
(setf v42 '(352.0 0.0 0.0))
(setf v43 ( 64.0 0.0 0.0))
(setf v44 ( 0.0 0.0 0.0))
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(setf v45 '( 0.0 496.0 0.0))

(setf rl (make-polygon :vlist '(v3 v23 v22 v2)
:slope 23.1
:orientation 225
:weight 1
:alist '(r32 r2 r7 r4)))

(setf r2 (make-polygon :vlist I(v19 v3 v2 v18)
:slope 17.2
:orientation 225
:weight 1
:alist '(rl r3 r8 r5)))

(setf r3 (make-polygon :vlist '(v15 v19 v18 v14)
:slope 27.6
:orientation 225
:weight 1
:alist '(r13 r2 r6 r9)))

(setf r4 (make-polygon :vlist '(v21 vl v2 v22)
:slope 23.1
:orientation 315
:weight 1
:alist '(rl r38 rlO r5)))

(setf r5 (make-polygon :vlist '(vl v17 vI8 v2)
:slope 17.2
:orientation 315
:weight 1
:alist '(r4 r6 r2 r11)))

(setf r6 (make-polygon :vlist '(v17 v13 v14 v18)
:slope 27.6
:orientation 315
:weight 1
:alist '(r5 r13 r3 r12)))

(setf r7 (make-polygon :vlist '(v24 v23 v3 v4)
:slope 23.1
:orientation 135
:weight 1
:alist '(r34 r8 rl rlO)))

(setf r8 (make-polygon :vlist '(v4 v3 v19 v20)
:slope 17.2
:orientation 135
:weight 1
:alist '(r7 r9 r2 rll)))

(setf r9 (make-polygon :vlist '(v20 v19 v15 v16)
:slope 27.6
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:orientation 135
:weight 1
:alist '(rB r13 r3 rl2)))

(setf riO (make-polygon :vlist '(v24 v4 vi v21)
:slope 23.1
:orientation 045
:weight 1
:alist '(r37 rli r7 r4)))

(setf nil (make-polygon :vlist 'Mv v20 v17 vi)
:slope 17.2
:orientation 045
:weight 1
:alist I(riO r12 r8 r5)))

(setf r12 (make-polygon :vlist '(v20 v16 v13 v17)
:slope 27.6
:orientation 045
:weight 1
:alist '(nil r13 r9 r6)))

(setf r13 (make-polygon :vlist '(v16 v15 v14 v13)
:slope 0.0
:orientation 0
:weight 1
:alist '(r9 r6 r3 r12)))

(setf r14 (make-polygon :vlist ' (v36 v32 v29 v33)
:slope 15.7
:orientation 0
:weight 1
:alist '(r35 r15 r26 rl8)))

(setf US5 (make-polygon :vlist '(v32 v8 v5 v29)
:slope 0.0
:orientation 0
:weight 1
:alist '(r14 r16 r19 r27)))

(setf r16 (make-polygon :vlist 'Mv v28 v25 v5)
:slope 18.1
:orientation 0
:weight 1
:alist '(riS r17 r20 r28)))

(setf r17 (make-polygon :vlist ' (v28 vlO v9 v25)
:slope 27.3
:orientation 0
:weight 1
:alist '(r16 r30 r21 r29)))

(setf r18 (make-polygon :vlist '(v35 v31 v32 v36)
:slope 15.7
:orientation 090
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: weight 1
:aiist '(r36 r19 r22 r14)))

(setf r19 (make-polygon :vlist '(032 v31 v7 v8)
:slope 0.0
:orientation 090
:weight 1
:alist ' (riB r20 r23 ri5)))

(setf r20 (make-polygon :vlist '(v7 v27 v28 v8)
:slope 18.1
:orientation 090
:weight 1
:aiist I(r19 r21 r24 ri6)))

(setf r21 (make-polygon :viist '(v27 v12 viO v28)
:slope 27.3
:orientation 090
:weight 1
:alist '(r20 r30 r25 r17)))

(setf r22 (make-polygon :vlist '(v35 v34 v30 v3i)
:slope 15.7
:orientation 180
:weight 1
:alist '(r31 r23 r18 r26)))

(setf r23 (make-polygon :vlist '(v31 v30 v6 v7)
:slope 0.0
:orientation 180
:weight 1
:aiist I(r22 r24 r27 r19)))

(setf r24 (,make-polygon :vlist I(v27 v7 v6 v26)
:slope 18.1
:orientation 180
:weight 1
:alist '(r23 r25 r20 r28)))

(setf r25 (make-polygon :viist '(v12 v27 v26 vii)
:slope 27.3
:orientation 180
:weight 1
:alist '(r24 r30 r21 r29)))

(setf r26 (make-polygon :vlist '(v30 v34 v33 v29)
:slope 15.7
:orientation 270
:weight 1
:alist '(r33 r27 r22 r14)))

(setf r27 (make-polygon :vlist '(v6 v30 v29 v5)
:siope 0
:orientation 270
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: weight 1
:alist ' (r26 r28 r23 r15)))

(setf r28 (make-polygon :vlist '(v26 v6 v5 v25)
:slope 18.1
:orientation 270
:weight 1
:alist ' (r27 r29 r24 r16)))

(setf r29 (make-polygon :viist ' (vii v26 v25 v9)
:slope 27.3
:orientation 270
:weight 1
:aiist '(r28 r30 r25 r17)))

(setf r30 (make-polygon :vlist '(vIO v12 vii v9)
:slope 0.0
:orientationl 0
:weight 1
:alist ' (r21 r25 r29 r17)))

(setf r31 (make-polygon :vlist I(v45 v37 v38 v39 v34 v35)
:slope 0.0
:orientationl 0
:weight 1
:alist '(r22 r36 r32)))

(setf r32 (make-polygon :vlist '(v34 v39 v40 v22 v23)
:slope 0.0
:orientation 0
:weight 1
:alist '(r3l r33 ri r38)))

(setf r33 (make-polygon :vlist '(v34 v23 v33)
:slope 0.0
:orientation 0
:weight 1
:alist '(r26 r32 r34)))

(setf r34 (make-polygon :vlist ' (v24 v33 v23)
:slope 0.0
:orientation 0
:weight 1
:alist '(r7 r33 r35)))

(setf r35 (make-polygon :vlist '(v36 v33 v24)
:slope 0.0
:orientation 0
:weight 1
:alist '(r14 r34 r37)))

(setf r36 (make-polygon :vlist I(v44 v45 v35 v36 v43)
:slope 0.0
:orientation 0
:weight 1
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:alist I(r3l r18 r37)))

(setf r37 (make-polygon :vlist '(v43 v36 v24 v21 v42)
:slope 0.0
:orientation 0
:weight 1
:alist 'Cr36 r35 riO r38)))

(setf r38 (make-polygon :vlist '(v42 v2i v22 v40 v41)
:slope 0.0
:orientation 0
:weight 1
:alist '(r32 r4 r37)))

113



Filename: rnap3.cl

By: HILTON, Cary A.

Date: May 91

Function: Contains map data.

1. defines vertices, edges, and polygons within
the map boundaries

2. specifies which vertices and edges each polygon
* is made from

3. contains adjacency list for polygons

4. map3 is identical to map2 except regions
are weighted

This map closely resembles the map used
by Ron Ross.

(defstruct edge
pt 1
pt2)

(defstruct polygon
vlist
slope
orientation
weight
alist)

*Global vertex list

(setf *global.vertex.list* '(vi v2 v3 v4 v5 v6 v7 v8 v9
v1O vli v12 v13 v14 v15 v16 v17 v18 v19
v20 v21 v22 v23 v24 v25 v26 v27 v28 v29
v30 v3l v32 v33 v34 v35 v36 v37 v38 v39
v40 v41 v42 v43 v44 v45))

*Global polygon list

(setf *globa1-region-list* '(ri r2 r3 r4 r5 r6 r7 r8 r9
riG nil r12 r13 r14 r15 riG r17 r18 r19
r20 r21 r22 r23 r24 r25 r26 r27 r28 r29
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r30 r31 r32 r33 r34 r35 r36 r37 r38))
(setf gl *global-region-list*)

(serf vl '*(352.0 96.0 14.5))
(setf v2 '(480.0 224.0 14.5))
(setf v3 '(400.0 304.0 14.5))

(setf v4 '(272.0 176.0 14.5))

(setf v5 '(240.0 320.0 9.0))
(setf v6 '(240.0 448.0 9.0))
(setf v7 '(112.0 448.0 9.0))
(setf v8 '(112.0 320.0 9.0))

(setf v9 '(192.0 368.0 27.75))
(setf vlO '(160.0 368.0 27.75))
(setf vll '(192.0 400.0 27.75))
(setf v12 '(160.0 400.0 27.75))

(setf v13 '(352.0 160.0 35.75))
(setf v14 '(416.0 224.0 35.75))
(setf v15 '(400.0 240.0 35.75))
(setf v16 '(336.0 176.0 35.75))

(setf v17 '(352.0 112.0 18.0))
(setf v18 '(464.0 224.0 18.0))
(setf v19 '(400.0 288.0 18.0))
(setf v20 '(288.0 176.0 18.0))

(setf v21 '(352.0 48.0 0.0))
(setf v22 '(528.0 224.0 0.0))
(setf v23 '(400.0 352.0 0.0))
(setf v24 '(224.0 176.0 0.0))

(setf v25 '(208.0 352.0 19.5))
(setf v26 '(208.0 416.0 19.5))
(setf v27 '(144.0 416.0 19.5))
(setf v28 '(144.0 352.0 19.5))

(setf v29 '(256.0 304.0 9.0))
(setf v30 '(256.0 464.0 9.0))
(setf v31 '( 96.0 464.0 9.0))
(setf v32 '( 96.0 304.0 9.0))

(setf v33 '(288.0 272.0 0.0))
(setf v34 '(288.0 496.0 0.0))
(setf v35 '( 64.0 496.0 0.0))
(setf v36 '( 64.0 272.0 0.0))

(setf v37 '( 0.0 790.0 0.0))
(setf v38 '(*x-max* 790.0 0.0))
(setf v39 '(*x-max* 496.0 0.0))
(setf v40 '(*x-max* 224.0 0.0))
(setf v41 '(*x-max* 0.0 0.0))
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(setf v42 '(352.0 0.0 0.0))
(setf v43 '( 64.0 0.0 0.0))
(setf v44 1( 0.0 0.0 0.0))
(setf v45 '( 0.0 496.0 0.0))

(setf ri (make-polygon :vlist '(v3 v23 v22 v2)
:slope 23.1
:orientation 225
:weight 6
:alist '(r32 r2 r7 r4)))

(setf r2 (make-polygon :vlist '(v19 v3 v2 v18)
:slope 17.2
:orientation 225
:weight 4
:alist '(ri r3 r8 r5)))

(setf r3 (make-polygon :vlist '(viS v19 v18 v14)
:slope 27.6
:orientation 225
:weight 8
:alist '(r13 r2 r6 r9)))

(setf r4 (make-polygon :vlist '(v21 vi v2 v22)
:slope 23.1
:orientation 315
:weight 6
:alist '(ri r38 riO r5)))

(setf r5 (make-polygon :vlist '(vi v17 v18 v2)
:slope 17.2
:orientation 315
:weight 4
:alist '(r4 r6 r2 rli)))

(setf r6 (make-polygon :vlist '(v17 v13 v14 v18)
:slope 27.6
:orientation 315
:weight 1
:alist '(r5 r13 r3 r12)))

(setf r7 (make-polygon :vlist '(v24 v23 v3 v4)
:slope 23.1
:orientation 135
:weight 6
:alist '(r34 r8 ri riO)))

(setf r8 (make-polygon :vlist 'Mv v3 v19 v20)
:slope 17.2
:orientation 135
:weight 4
:alist '(r7 r9 r2 nil)))
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(setf r9 (make-polygon :vlist I(v20 v19 v15 v16)
:slope 27.6
:orientation 135
:weight 8
:alist '(r8 r13 r3 r12)))

(setf riO (make-polygon :vlist '(v24 v4 vi v21)
:slope 23.1
:orientation 045
:weight 6
:alist '(r37 rli r7 r4)))

(setf nil (make-polygon :vlist '(v4 v20 v17 vi)
:slope 17.2
:orientation 045
:weight 4
:alist '(riO r12 r8 r5)))

(setf r12 (make-polygon :vlist '(v20 v16 v13 v17)
:slope 27.6
:orientation 045
:weight 8
:alist I(nil r13 r9 r6)))

(setf r13 (make-polygon :viist ' (v16 v15 v14 v13)
:slope 0.0
:orientation 0
:weight 1
:alist '(r9 r6 r3 n12)))

(setf r14 (make-polygon :vlist ' (v36 v32 v29 v33)
:slope 15.7
:orientation 0
:weight 4
:alist '(r35 r15 r26 r18)))

(setf ri5 (make-polygon :vlist '(v32 v8 v5 v29)
:slope 0.0
:orientation 0
:weight 1
:alist '(ri4 r16 r19 r27)))

(setf r16 (make-polygon :vlist '(v8 v28 v25 v5)
:slope 18.1
:orientation 0
:weight 4
:aiist '(niS r17 r20 r28)))

(setf r17 (make-polygon :viist '(v28 vlO v9 v25)
:slope 27.3
:orientation 0
:weight 8
:aiist '(r16 r30 r2i r29)))
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(setf r18 (make-polygon :vlist '(v35 v31 v32 v36)
:slope 15.7
:orientation 090
:weight 4
:alist '(r36 r19 r22 r14)))

(setf r19 (make-polygon :vlist '(v32 v31 v7 v8)
:slope 0.0
:orientation 090
:weight 1
:alist ' (r18 r20 r23 r15)))

(setf r20 (make-polygon :vlist '(v7 v27 v28 v8)
:slope 18.1
:orientation 090
:weight 4
:aiist '(r19 r21 r24 r16)))

(setf r2l (make-polygon :vlist '(v27 v12 vlO v28)
:slope 27.3
:orientation 090
:weight 8
:alist '(r20 r30 r25 r17)))

(setf r22 (make-polygon :vlist ' (v35 v34 v30 v31)
:slope 15.7
:orientation 180
:weight 4
:alist ' (r31 r23 rl8 r26)))

(setf r23 (make-polygon :vlist '(v31 v30 v6 v7)
:slope 0.0
:orientation 180
:weight 1
:alist ' (r22 r24 r27 r19)))

(setf r24 (make-polygon :vlist I(v27 v7 v6 v26)
:slope 18.1
:orientation 180
:weight 4
:alist '(r23 r25 r20 r28)))

(setf r25 (make-polygon :vlist '(v12 v27 v26 vii)
:slope 27.3
:orientation 180
:weight 8
:alist '(r24 r30 r21 r29)))

(setf r26 (make-polygon :vlist ' (v30 v34 v33 v29)
:slope 15.7
:orientation 270
:weight 4
:alist I(r33 r27 r22 r14)))
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(setf r27 (make-polygon :vlist '(v6 v30 v29 v5)
:slope 0
:orientation 270
:weight 1
:alist '(r26 r28 r23 r15)))

(setf r28 (make-polygon :vlist '(v26 v6 v5 v25)
:slope 18.1
:orientation 270
:weight 4
:alist '(r27 r29 r24 r16)))

(setf r29 (make-polygon :vlist '(vii v26 v25 v9)
:slope 27.3
:orientation 270
:weight 8
:alist '(r28 r30 r25 r17)))

(setf r30 (make-polygon :vllst '(vlO v12 vii v9)
:slop,- 0.0
:orientation 0
:weight 1
:alist '(r2J. r25 r29 r17)))

(setf r31 (make-polygon :vlist '(v45 v37 v38 v39 v34 v35)
:slope 0.0
:orientation 0
:weight 1
:alist I(r22 r36 r32)))

(setf r32 (make-polygon :vlist ' (v34 v39 v40 v22 v23)
:slope 0.0
:orientation 0
:weight 1
:alist '(r31 r33 ri r38)))

(setf r33 (make-polygon :vlist '(v34 v23 v33)
:slope 0.0
:orientation 0
:weight 1
:alist '(r26 r32 r34)))

(setf r34 (make-polygon :vlist '(v24 v33 v23)
:slope 0.0
:orientation 0
:weight 1
:alist '(r7 r33 r35)))

(setf r35 (make-polygon :vlist '(v36 v33 v24)
:slope 0.0
:orientation 0
:weight 1
:alist '(r14 r34 r37)))

(setf r36 (make-polygon :vlist '(v44 v45 v35 v36 v43)
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:slope 0.0
:orientation 0
:weight 1
:alist I(r31 r18 r37)))

(setf r37 (make-polygon :vlist '(v43 v36 v24 v2l v42)
:slope 0.0
:orienktation 0
:weight 1
:alist ' (r36 r35 riO r38)))

(setf r38 (make-polygon :vlist '(v42 v21 v22 v40 v41)
:slope 0.0
:orientation 0
:weight 1
:alist '(r32 r4 r37)))
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